ной структурой. Центры учета определяются как места возникновения доходов и расходов – центры прибыли и центры затрат.

Во-вторых, определена учетная политика, которая позволит оценивать финансовые результаты центров учета.

Третьим условием можно назвать выделение прямых и косвенных, постоянных и переменных доходов и расходов. Результатом этой работы является группировка статей расходов и доходов, обусловленная не целями планирования и контроля, а определяемая применением сходных технологий планирования и учета.

Кроме того, важнейшее значение для внедрения эффективной системы бюджетирования на предприятии имеет возможность автоматизации ее процессов.

А. А. Шапуров, И. Л. Щеклеина

Современные технологии обезвоживания железорудного концентрата

Процессы обезвоживания железорудных пульп по технологической и экономической значимости, а также по технической оснащенности оборудованием занимают одно из основных мест в переработке минерального сырья. Стоимость обезвоживания составляет 30% от общей стоимости переработки.

Для отделения жидкости применяются различные механические и термические устройства. Однако все эти устройства либо сложны и дороги в эксплуатации, либо недостаточно эффективны.

Наиболее перспективным является использование устройства, в котором пульпа обезвоживается под воздействием бегущего магнитного поля, создаваемого с помощью трехфазного линейного индуктора¹.

Отличительная особенность данного устройства заключается в том, что его конструкция не содержит вращающихся и перемещающихся деталей, имеет небольшие габаритные размеры. Эксплуатационная надежность выше, чем у существующих устройств обезвоживания.

При проектировании такого устройства необходимо производить расчет бегущего магнитного поля для дальнейшего определения силового взаимодействия поля с ферромагнитной средой, оценки производительности и энергетических показателей.

 $^{^{1}}$ A. с. 1570779 СССР В 03 С 1/24, В 01 Д 35/06. Способ обезвоживания тонкоизмельченных ферромагнитных пульп и устройство для его осуществления / Р. Е. Леонов, И. Л. Ще-клеина. – Заявлено 12.04.88, опубл. В БИ № 22, 1990.

Основным фактором, характеризующим распространение электро-магнитных волн в ферромагнитной среде, является непостоянство магнитной проницаемости μ (H). Для выполнения расчета поля с учетом этого фактора наиболее подходит метод аналогового моделирования многослойных структур, используемого для анализа ЛАД с составным вторичным элементом.

В соответствии с этим методом весь слой ферромагнитного материала разбивается на горизонтальные слои с однородными свойствами. Каждый слой характеризуется размером, удельным электрическим сопротивлением и магнитной проницаемостью, которая принимается в слое постоянной. Ее значение определяется по напряженности магнитного поля на нижней границе слоя с использованием кривой намагничивания. Связь между составляющими электромагнитного поля на верхней и нижней границах слоя определяется уравнением связи¹.

Таким образом, можно определить параметры бегущего магнитного поля во всех областях ферромагнитного слоя.

М. М. Шевелев

Особенности тепловых процессов в силовых полупроводниковых приборах автономного инвертора напряжения электропривода переменного тока

Большая теплоемкость охладителей силовых приборов (СП) электропривода позволяет при проектировании рассматривать средние значения потерь в автономном инверторе напряжения (АИН). Энергия потерь в полупроводниковых структурах (ПС) СП АИН и температура ПС СП имеют постоянную и переменную составляющие, которые определяются электромагнитными процессами в системе АИН – машина переменного тока.

Значительно меньшая теплоемкость полупроводниковой структуры силовых приборов определяет необходимость расчета как среднего значения, так и переменной составляющей температуры при проведении корректного проверочного расчета температуры ПС и определении требований к охладителю.

Для наиболее тяжелого режима работы АИН электропривода переменного тока с точки зрения энергетических потерь в СП – синусоидальной широтно-импульсной модуляции (ШИМ), максимальные пульсации температуры ПС соответствуют максимальной амплитуде и малой основной частоте фазного тока. Как правило, это единицы герц и ниже.

¹ Веселовский О. Н., Коняев А. Ю., Сарапулов Ф. Н. Линейные асинхронные двигатели. – М.: Энергоатомиздат, 1991. – 256 с.