дать студентам основные сведения о компьютерных системах проектирования автоматизации производственных процессов на примере "RealFlex".

А В дальнейшем само собой появляется еще одно направление развития курса — это создание экспертных систем, основанных на вычислительных системах, которые могут работать со знаниями. В процессе работы экспертная система рассматривает правила в порядке приоритетов, установленных инженером по предоставлению знаний.

Кроме этого, можно создать экспертную систему, которая помогает в разработке комплексной вычислительной системы, наи-лучшим образом отвечающей потребностям, а после того как эта задача решена, система осуществляет комплектацию системы выбранными компонентами.

С. М. Анохин

ИСПОЛЬЗОВАНИЕ КОМПЬЮТЕРНЫХ ИННОВАЦИОННЫХ ТЕХНОЛОГИЙ ПРИ ИЗУЧЕНИИ КУРСА "ДЕТАЛИ МАШИН"

Курсовое проектирование по "Деталям машин" является первой самостоятельной конструкторской работой студентов. Курсовой проект носит научно-исследовательский характер и базируется на дисциплинах общетехнического цикла: деталях машин, материаловедении, теоретической механике, гидравлике и др.

Целью проекта помимо расширения теоретических знаний, закрепления умения производить сложные расчеты и работать со справочной литературой является развитие у студентов инженерного мышления (поиск новых идей, моделирование, эвристический подход к проблеме), что связано с умением аналитически обрабатывать информацию об узлах и механизмах. С другой стороны, целостное представление о работе будет затруднено из-за большого объема повторяющихся вычислений и рутинного характера ручного счета (даже при использовании микрокалькулятора). Решение этого противоречия нам видится в оптимизации и автоматизации процесса проектирования, в создании компьютерных технологий.

Одной из инновационных технологий при изучении курса "Детали машин" является использование в учебном процессе электронных таблиц SuperCalk, Lotus 1-2-3, Exel.

Освоение и использование электронных таблиц в большинстве случаев не вызывает затруднений даже у малоподготовленного к работе на персональном компьютере пользователя. В основу электронных таблиц заложена универсальность, что позволяет использовать их как преподавателю при подготовке и объяснении нового материала, так и студенту при изучении различных общетехнических гисциплин.

Электронные таблицы позволяют гибко перестраивать технологию учебного процесса для студентов разных курсов с различной степенью подготовленности по предмету, не опирайсь при этом на знание специальных языков программирования Basic, Pascal и др.

Использование электронных таблиц позволяет отображать на экране вводимые данные в виде формул и величин. а также получаемые результаты в виде графиков и гистограмм, что делает изучение курса более наглядным.

Л. В. Соловьева

ОРГАНИЗАЦИЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ ПО ГРАФИЧЕСКИМ ДИСЦИПЛИНАМ С ПРИМЕНЕНИЕМ ЭЛЕМЕНТОВ САПР

С применением на производстве вычислительной техники и систем автоматизированного проектирования (САПР) в конструкторско-чертежных работах выдвигаются новые требования к процес у обучения графическим дисциплинам. Становится необходимым использование компьютерного обучения в изучении таких курсов, как "Начертательная геометрия", "Инженерная графика", "Машинострсительное черчение". Кроме того, внедрение ЭВМ в процесс обучения делает его более эффективным.

Важной частью компьютерного обучения, особенно в графических дисциплинах, является наличие автоматизированной обучающей системы (АОС), отвечающей современным требованиям к про-