Как видно из рис 2, δ , при заполнении формы с одним фиксированным значением β уровень сплава в верхней тонкостенной части формы / значительно превышает равновесный 2. Поэтому в конце заполнения формы металлостатическое давление расплава намного больше перепада давлений, действующего на расплав. Это вызывает опускание уровня сплава с последующими его колебаниями и образование дефектов отливок в виде спаев.

При заполнении формы с использованием трех последовательно включаемых диафрагм с рассчитанными по приведенной методике площадями ($\omega_{\partial 0}$ =3,36 мм, $\omega_{\partial I}$ =1,14 мм, $\omega_{\partial 2}$ =2,87 мм) обеспечивается плавное, без существенного фонтанирования заполнение всех элементов формы. Погрешность расчетных значений времени не превышает 10 %.

Данная методика может быть рекомендована при изготовлении отливок со значительными перепадами толщин стенок ($\frac{\omega_{i+1}}{\omega_i} < 0.5 \,$ или $\frac{\omega_{i+1}}{\omega_i} > 0.6 \,$).

Литература

1. Чуркин Б. С., Гофман Э. Б. Основы литейной гидравлики. Екатерин-бург: Изд-во Свердл. инж.-пед.ин-та, 1992. – 236 с.

А. Г. Панчук, Э. Б. Гофман, Е. А. Казанцева, О. Е. Обожина

ИССЛЕДОВАНИЕ ОКИСЛЕННОСТИ И СОСТАВА МЕТАЛЛА В СТАЛЕРАЗЛИВОЧНОМ КОВШЕ ВО ВРЕМЯ ВЫПУСКА, РАСКИСЛЕНИЯ И РАЗЛИВКИ

Известно, что качество кипящего химически закупоренного слитка во многом зависит от состава металла и в первую очередь от содержания кислорода и температуры металла.

С целью изучения поведения компонентов металла в процессе разливки, нами было проконтролировано около 40 плавок стали марки 08кп. Пробы отбирали из ковша по мере его наполнения, в начале разливки, а также перед наполнением изложниц по ходу состава. В таблице представлено изменение состава металла и шлака за время разливки.

Как видно из рис. 1, содержание марганца и кремния в стали с момента окончания раскисления до разливки первых слитков заметно снижается, что может быть связано с продолжительным усреднением состава металла. В конце разливки, когда в ковше остается 40–50 т металла, вновь наблюдается падение

концентрации тех же элементов, в то же время содержание кислорода увеличивается на 30-30 %. Такие изменения состава металла в конце разливки можно объяснить только влиянием находящегося в ковше шлака как источника кислорода.

Таким образом, представленные данные свидетельствуют о том, что состав металла в ковше в процессе разливки не остается стабильным, особенно по кислороду. Более того, обеспечить такие показатели без принятия специальных мер (например, продувкой металла в ковше инертным газом) довольно трудно. Следствием этого, при субъективной оценке интенсивности кипения металла в изложнице, являются значительные колебания расхода алюминия на химическое закупоривание и получение большой доли слитков с неблагоприятной структурой.

Химический состав металла и шлака в сталеразливочном ковше

Номер	Состав, %								
плавки	металла				шлака				
	C	Si	Mn	0	CaO	SiO ₂	FeO	MnO	Al_2O_3
1	0,07	0,014	0,33	0,048	49,51	17,47	12,67	7,74	2,92
	0,07	0,011	0,44	0,043	21,20	21,11	15,04	10,07	6,39
2	0.07	0,011	0,34	0,055	Н. св.	16,21	17,35	14,42	<u>5,30</u>
	0,07	0,011	0,29	0,041	Н. св.	20,03	16,06	13,59	5,95
3	0.09	0.012	0,042	0,037	40,58	12,02	18,55	<u>8.13</u>	<u>3,26</u>
	0,08	0,011	0,035	0,045	34,94	16,40	19,16	7,87	9,87
4	0,10	0,006	0,35	0,045	43,91	13,08	18,69	10,92	3,48
	0,09	0,006	0,33	0,049	36,12	17,75	17,73	10,07	5,44
5	0.08	0,007	0,40	0,045	41,45	16,91	19,47	18,34	<u>7.01</u>
	0,07	0,006	0,30	0,046	28,57	20,92	18,75	13,67	7,40
6	0.08	0,007	0,41	0,035	44,76	19,41	11,35	17,74	7.10
	0,07	0,006	0,34	0,044	37,60	21,57	11,25	15,87	10,16
7	0,10	0,007	0,43	0,040	45,58	21,93	19,42	11.61	5,93
	0,09	0,006	0,38	0,042	35,34	22,29	13,76	12,88	9,02
8	0.10	0,010	0,50	0,037	39,48	22,32	19,36	<u>23,26</u>	<u>2,65</u>
	0,10	0,006	0,44	0,035	21,60	29,14	15,56	24,10	7,71
9	0.10	0,011	0,36	0,044	51,70	16,91	13,91	9,12	<u>3.75</u>
	0,08	0,009	0,36	0,046	25,53	22,42	15,14	4,86	7,95
10	0,09	0,008	0,46	0,031	43,59	8,49	18,95	10,43	6,26
	0,08	0,009	0,44	0,042	35,81	14,39	17,41	10,05	10,64
11	0,10	0,009	0,51	0,031	37,32	21,46	15,86	12,66	3,84
	0,09	0,007	0,51	0,047	31,14	20,52	14,83	13,87	7,84

Числитель – начало разливки, знаменатель – конец разливки

В значительной степени указанную проблему можно решить, если иметь оперативную информацию об окисленности металла в ковше при наполнении каждого слитка.

С целью получения объективной оценки окисленности металла, отправляемого на разливку, нами было предложено и опробовано устройство, по-

зволяющее непрерывно контролировать активность кислорода в металле и его температуру во время выпуска и разливки. Управление раскислением металла в ковше осуществляется на основе информации об окисленности с учетом всех предшествующих этому моменту процессов.

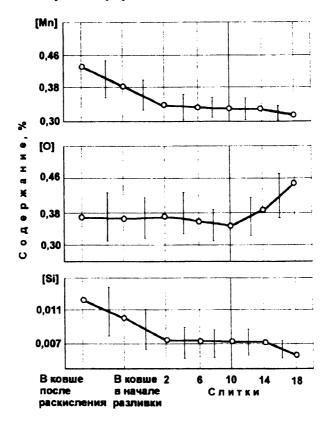


Рис. 1. Изменение содержания марганца, кислорода и кремния в металле

Устройство (рис. 2), выполненное в виде огнеупорного блока, устанавливалось в нерабочий сталеразливочный стакан на огнеупорной обмазке. В качестве датчиков активности кислорода в металле использовали твердые электролиты на основе Al_2O_3 с добавками ZrO_2 и TiO_2 . Электродом сравнения служил спектрально чистый графит. Для защиты огнеупорного датчика от термического удара при попадании в ковш первых порций металла, а также от механического воздействия использовали два стальных стакана.

Установку блока осуществляли одновременно с закреплением рабочего сталеразливочного стакана, и после кратковременной сушки стакана и блока под горелкой ковш был готов к принятию металла. Запись ЭДС с датчиков производилась с помощью прибора КСП-4 через экранированный кабель.

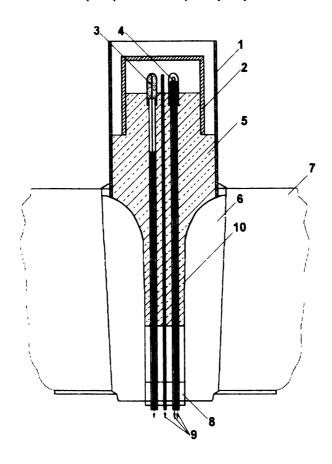


Рис. 2. Устройство для замера окисленности и температуры металла в ковше: 1, 2 — металлическая защита; 3, 4 — датчики окисленности и температуры; 5 — огнеупорный блок; 6 — сталеразливочный стакан; 7 — футеровка ковша; 8 — металлическая пробка; 9 — токоотводы; 10 — огнеупорная обмазка

На рис. 3, 4 приведены диаграммы, записанные во время выпуска стали 08кп. На диаграмме (см. рис. 3) видно, что датчик окисленности металла начал работать через 20 с от начала выпуска, что свидетельствует о возможности получать информацию об активности кислорода уже первых порций металла. После ввода ферромарганца на 2-й минуте от начала слива металла, ЭДС с достигнутого исходного значения 340 мВ плавно снизилась до 170 мВ, а затем по мере

поступления новых порций металла увеличилась до уровня 260 мВ и на этом уровне сохранялась до начала разливки.

Попытка корректировки окисленности металла присадкой алюминия массой 22 кг на 3-й минуте от начала выпуска не привела к снижению активности кислорода, так как, видимо, основная его доля окислилась за счет шлака и атмосферы воздуха. Следовательно, судя по диаграмме, на данной плавке (длительность выпуска 4 мин) степень использования алюминия металлом очень низкая.

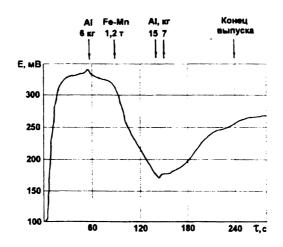


Рис. 3. Диаграмма записи ЭДС на плавке с коротким выпуском металла

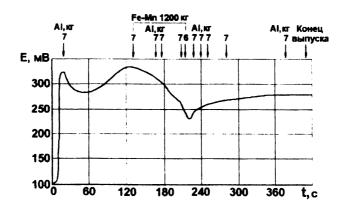


Рис. 4. Диаграмма записи ЭДС по ходу выпуска металла

Диаграмма изменения окисленности металла во время выпуска другой плавки (см. рис. 4) дает несколько иные сведения о степени использования алюминия, присаживаемого в ковш. За время слива металла из конвертера в течение 6 минут 45 секунд было введено в ковш около 80 кт алюминия, из которых только первые добавки (35 кг) оказали раскисляющее воздействие на металл – на 1-й и 3-й минутах от начала выпуска. Алюминий, введенный позднее, реагировал в основном с кислородом шлака и атмосферы.

Причинами преобладающего окисления алюминия после выпуска более половины металла в ковш по нашим наблюдениям являются:

- 1) увеличение количества шлака в ковше за счет раскисления и воронкообразования (по нашим данным,приблизительно в 2 раза);
 - 2) уменьшение степени перемешивания металла падающей струей.

Поэтому чем раньше (примерно до 1/2 высоты наполнения ковша) присаживается алюминий, тем с меньшим количеством шлака он взаимодействует и, следовательно, более полно используется для раскисления металла.

Таким образом, при необходимости корректировки окисленности металла (о чем можно надежно судить по показаниям датчиков кислородно-концентрационных элементов) алюминий следует вводить только в начале выпуска, тогда необходимость в больших расходах алюминия просто отпадет.

Непрерывный замер окисленности металла в ковше во время разливки позволяет управлять процессом химического закупоривания слитков и избежать субъективных ошибок в оценке количества вводимого в изложницу алюминия, а следовательно, увеличить долю качественных слитков.

А. В. Афонаскин, Б. С. Чуркин, Т. Ю. Бажова

ОПТИМИЗАЦИЯ РАСКИСЛЕНИЯ СТАЛИ 30ХМЛ ДЛЯ ИЗГОТОВЛЕНИЯ ТЯЖЕЛОНАГРУЖЕННОЙ АРМАТУРЫ, РАБОТАЮЩЕЙ В УСЛОВИЯХ КРАЙНЕГО СЕВЕРА

Известно, что на хладноломкость промышленных сталей существенно влияет количество и морфология неметаллических включений [1, 2]. От применяемых раскислителей и технологии раскисления стали зависят типы неметаллических включений, индекс загрязненности стали и гранулярность структуры. Одним из путей повышения хладностойкости стали является бескремнистое раскисление алюминием, при этом важно определить оптимальное количество