предположить, что специфическое формирование содержания обучения и управления учебной деятельностью студентов создаст предпосылки для активизации и повышения качества учебного процесса.

Б. С. Чуркин, А. Б. Чуркин, Э. Б. Гофман, В. В. Сапронов

РАСЧЕТ ПРОЦЕССА ФИЛЬТРАЦИИ ПАРОГАЗОВОЙ ФАЗЫ ЧЕРЕЗ СТЕНКИ ЛИТЕЙНОЙ ФОРМЫ ПРИ ЛИТЬЕ ПО ПЕНОПОЛИСТИРОЛОВЫМ МОДЕЛЯМ ВАКУУМНЫМ ВСАСЫВАНИЕМ С ПРИМЕНЕНИЕМ ЧИСЛЕННОГО МЕТОДА ПОТОКОВ

При заливке форм вакуумным всасыванием кинстика заполнения формы сплавом определяется темпом изменения разрежения ΔP_{ϕ} в зазоре между расплавом и пенополистироловой моделью. Схема установки для литья вакуумным всасыванием показана на рис. 1.

 $\Delta P_{\phi} = P_{a} - P_{3}$

где $P_{\rm a}$ – атмосферное давление;

Р. давление парогазовой фазы в зазоре.

При температурах, характерных для алюминиевых сплавов, газовая фаза в зазоре состоит из воздуха и паров стирола. Уравнение Клапейрона – Менделеева для газа в зазоре имеет вид

$$P_{3} V_{3} = (m_{\rm B} R_{\rm B} + m_{\rm B} R_{\rm H}) T_{3}, \tag{1}$$

где *V*, объем зазора;

*m*_в и *m*₀ массы воздуха и пара стирола в зазоре;

 $R_{\rm B} = 287 \ \text{Дж/(кг·K)}; \ R_{\rm n} = 80 \ \text{Дж/(кг·K)}$ газовые постоянные воздуха и нара стирола;

Т. температура газа в зазоре, К.

На начальном этапе при заполнении металлопровода масса воздуха равна массе воздуха в металлопроводе. В конце заполнения металлопровода весь воздух будет за счет фильтрации передан в вакуумную камеру,

и в дальнейшем газ в зазоре при заполнении формы будет состоять из паров стирола.

Рис. 1. Схема установки для литья вакуумным всасыванием: 1 -- тигель с расплавом; 2 -- металлопровод; 3 -- зазор между моделью и расплавом; 4 пенополистироловая модель; 5 -- стенка формы; 6 -- вакуумная камера; 7 дросселирующее устройство (диафрагма)

Продифференцировав выражение (1) по времени, для заполнения полости формы получаем уравнение

$$V_3 dP_3 + P_3 dV_3 = R_n T_3 dm_n$$

Заменив дифференциалы конечными разностями, после преобразований получаем уравнение для расчета давления в зазоре

$$P_{i}^{\kappa+1} = P_{i}^{\kappa} + \frac{R_{ii} \cdot T_{i}}{V_{i}^{\kappa}} \cdot \Delta m_{ii} - \frac{P_{i} \cdot \Delta V_{i}}{V_{i}^{\kappa}}$$

где ΔV_{3} и Δm_{11} – изменения объсма зазора и массы газа в зазоре за время Δt ;

 P_{3}^{κ} и $P_{3}^{\kappa+1}$ – давление газа в зазоре на данном и последующем шагах по времени.

$$\Delta m_{\rm m} = \Delta m_{\rm neu} + \Delta m_{\rm db}$$

где $\Delta m_{\rm neu}$ – масса испарившегося за время Δt жидкого полистирола; Δm_{ϕ} – масса пара, профильтровавшегося за время Δt через стенку формы в вакуумную камеру.

Величины $\Delta m_{\rm neu}$ и ΔV_{3} зависят от кинстики плавления и испарения пенополистирола, а также от скорости подъема сплава в полости формы [1]. Рассмотрим методику определения величины Δm_{ϕ} .

$$\Delta m_{\phi} = \rho_3 \Pi \delta_3 v_1 \cdot \Delta t,$$

где р₁ – плотность газа в зазоре;

П – периметр поперечного сечения модели;

δ₁ – высота зазора между моделью и расплавом;

*v*_r скорость газового потока на границе зазора и песчаной формы.

Приняв $\rho_i = \frac{P_i}{R_{ii} \cdot T_i}$, а также в соответствии с законом Дарси $v_i = -\frac{k}{\mu} \cdot \left(\frac{\partial P}{\partial x}\right)_i$, где k коэффициент проницаемости песчаной формы; μ –

динамический коэффициент вязкости пара стирола; $\left(\frac{\partial P}{\partial x}\right)_{1}$ – градиент дав-

ления на границе зазора и формы, получаем

$$\Delta m_{\phi} = -\frac{P_{\mu}\Pi\delta_{\mu}k\cdot\Delta t}{R_{\mu}T_{\mu}\mu}\cdot\left(\frac{\partial P}{\partial x}\right)_{\mu}.$$
(2)

Как вилно из выражения (2), для определения Δm_{ϕ} необходимо знать распределение давления газа по объему стенки формы. В теории литья по газифицированным моделям для расчета распределения давления газа по стенке формы применяют приближенное уравнение одномерной фильтрации при линейном распределении давления в стенке формы [2]. Это приводит к большим погрешностям расчета, особенно для условий литья вакуумным всасыванием. Более строгий расчет, учитывающий реальные условия фильтрации, можно обеспечить, применяя численный метод потоков. Сущность этого метода сводится к следующему. Стенка формы разбивается на ряд элементарных ячеек, расчетные точки располагаются в центрах ячеек (см. рис. 1). Для каждой ячейки можно написать уравнение изменения массы газа в ячейке

$$\frac{\partial m}{\partial t} = -\iint_{S} \rho_{1} \cdot \nu_{1} \cdot dS , \qquad (3)$$

где $\frac{\partial m}{\partial t}$ – скорость изменения массы газа в ячейке; $\iint_{S} \rho_{1} v_{1} \cdot dS$ – поток массы газа через поверхность S, ограничивающую

объем ячейки V;

ρ_г и ν₁ -- плотность и скорость газа в граничных точках ячейки. Из уравнения (3) имеем

$$\frac{\partial \rho}{\partial t} = -\frac{1}{V \cdot \Pi OP} \iint_{S} \rho_{1} v_{1} \cdot dS,$$

или

$$\frac{\partial P}{\partial t} = -\frac{1}{V \cdot \Pi OP} \iint_{S} P_{v} v_{v} \cdot dS , \qquad (4)$$

где *Р* и *P*₁ - давление в расчетной точке ячейки и в граничной точке; ПОР – пористость слоя песка.

Рассмотрим реализацию метода потоков для расчета процесса фильтрации в двумерном приближении. На рис. 2 изображена элементарная ячейка с индексом i; j, где i - номер ячейки в горизонтальном направлении (вдоль оси X), j - номер ячейки в вертикальном направлении (вдоль оси Y), а также ближайшие соседние ячейки с индексами i - 1; j, i+1; j,i; j - 1, i; j+1.

С учетом малых размеров ячейки, т. е. малых величин *HX* и *HY*, уравнение (4) принимает вид

$$\frac{\partial P_{i;j}}{\partial t} = \frac{1}{\Pi OP} \left(\frac{v_{xn} P_a - v_{xup} P_{up}}{HX} + \frac{v_{vu} P_a - v_{vu} P_B}{HY} \right), \tag{5}$$

где v_{xn} , v_{xup} , v_{yw} , v_{yw} , P_n , P_n , P_n , P_B - компоненты скорости и давление газа на левой, правой, нижней и верхней границах ячейки.

Рис. 2. Схема к методу потоков

Для внутренних ячеек стенки формы, со всех сторон окруженные соседними ячейками, можно написать уравнения:

$$v_{\rm ver} = -\frac{k}{\mu} \left(\frac{\partial P}{\partial x} \right)_{\rm e}; \ v_{\rm ver} = -\frac{k}{\mu} \left(\frac{\partial P}{\partial x} \right)_{\rm up}; \ v_{\rm ver} = -\frac{k}{\mu} \left(\frac{\partial P}{\partial y} \right)_{\rm u}; \ v_{\rm ver} = -\frac{k}{\mu} \left(\frac{\partial P}{\partial y} \right)_{\rm u}.$$

Заменяя производные конечными разностями, получаем

$$v_{xx} = -\frac{k}{\mu} \cdot \frac{(P_{i;j} - P_{i-1;j})}{HX}; v_{xyp} = -\frac{k}{\mu} \cdot \frac{(P_{i+1;j} - P_{i;j})}{HX}; v_{yy} = -\frac{k}{\mu} \cdot \frac{(P_{i;j} - P_{i;j})}{HY};$$
$$v_{yy} = -\frac{k}{\mu} \cdot \frac{(P_{i;j+1} - P_{i;j})}{HY}.$$

Подставляя эти выражения, а также выражения $P_{\mu} = \frac{P_{i,j} + P_{i-1,j}}{2}$, $P_{\mu} = \frac{P_{i,j} + P_{i,j-1}}{2}$, $P_{\mu} = \frac{P_{i,j+1} + P_{i,j}}{2}$ в уравнение (5) и приняв

 $\frac{\partial P_{i;j}}{\partial t} = \frac{P_{i;j}^{\kappa(1)} - P_{i;j}^{\kappa}}{\Delta t},$ получаем уравнение для расчета давления газа во внутренних ячейках стенки формы

$$P_{i;j}^{\kappa+1} = P_{i;j}^{\kappa} + \left(\frac{P_{i;1;j}^2 - 2P_{i;j}^2 + P_{j;1;j}^2}{2HX^2} + \frac{P_{i;j+1}^2 - 2P_{i;j}^2 + P_{i;j+1}^2}{2HY^2}\right) \cdot \frac{k \cdot \Delta t}{\mu \cdot \Pi OP}.$$
 (6)

В начальный момент времени давление во всех ячейках равно атмосферному. Последовательно применяя уравнение (6) для первого и последующих шагов по времени, можно определить распределение давления в разные моменты времени с шагом Δt .

Граничные ячейки, т. е. ячейки, примыкающие к границам стенки формы, не имеют соседних ячеек с одной или с двух граней. Поэтому величины скоростей и давлений на этих гранях должны определяться с учетом граничных условий. Например, на гранях ячеек, контактирующих с газонепроницаемыми стенками опоки, пенополистироловой модели или с расплавом, скорость газа принимается равной нулю.

При литье вакуумным всасыванием эвакуация газа из зазора в вакуумную камеру осуществляется через верхнюю поверхность формы. Поэтому на верхних границах верхних ячеек стенки формы давление равно давлению в вакуумной камере P_{κ} . Для определения скорости газа на этих границах $v_{\nu B}$ напишем разложение в ряд Тейлора давления в центре ячейки $P_{i;N}$ и в центре нижней соседней ячейки $P_{i;N-1}$:

$$P_{i:N} = P_{\kappa} - \frac{HY}{2} \left(\frac{\partial P}{\partial y} \right)_{\mu} + \frac{HY^2}{8} \left(\frac{\partial^2 P}{\partial y^2} \right)_{\mu}; \ P_{i:N-1} = P_{\kappa} - \frac{3HY}{2} \left(\frac{\partial P}{\partial y} \right)_{\mu} + \frac{9HY^2}{8} \left(\frac{\partial^2 P}{\partial y^2} \right)_{\mu}.$$

Умножим первое уравнение на 9 и вычтем второе уравнение из первого. После преобразований получаем

$$\left(\frac{\partial P}{\partial y}\right)_{\mu} = \frac{8P_{\mu} + P_{i;N-1} - 9P_{i;N}}{3HY};$$
$$v_{\mu} = -\frac{k}{\mu} \cdot \left(\frac{\partial P}{\partial y}\right)_{\mu} = -\frac{k \cdot \left(8P_{\mu} + P_{i;N-1} - 9P_{i;N}\right)}{3HY \cdot \mu}$$

Для ячеек, контактирующих с газовым зазором между моделью и расплавом, давление на соответствующей грани равно давлению газа в зазоре *P_i*. Если ось *X* направить от границы стенки формы с зазором, то, применяя рассмотренную выше методику, для вычисления скорости на левой границе граничной ячейки получаем следующие формулы:

$$\left(\frac{\partial P}{\partial x}\right)_{i} = \left(\frac{\partial P}{\partial x}\right)_{i} = \frac{9P_{i,j} - P_{2,j} - 8P_{i}}{3HX};$$
(7)

$$v_{1} = -\left(\frac{\partial P}{\partial x}\right)_{1}.$$
 (8)

Формулы (7) и (8) используются для расчета dm_{ϕ} в соответствии с выражением (2).

Для иллюстрации получим уравнение для расчета давления в ячейке, граничащей с газовым зазором. Граничная ячейка имеет индекс 1; *j*. В соответствии с формулами (7) и (8) имеем

$$v_{\mu} = -\frac{k \cdot (9P_{1,j} - P_{2,j} - 8P_{i})}{3HX \cdot \mu}; P_{\mu} = \frac{P_{2,j} + P_{1,j}}{2};$$
$$P_{\mu} = P_{\mu}; v_{\mu\mu} = -\frac{k \cdot (P_{2,j} - P_{1,j})}{HX \cdot \mu};$$
$$v_{\mu} = -\frac{k \cdot (P_{1,j} - P_{1,j-1})}{HY \cdot \mu}; v_{\mu} = -\frac{k \cdot (P_{1,j+1} - P_{1,j})}{HY \cdot \mu};$$
$$P_{\mu} = \frac{P_{1,j} + P_{1,j-1}}{2}; P_{\mu} = \frac{P_{1,j+1} + P_{1,j}}{2}.$$

Подставив эти выражения в уравнение (5), после преобразований получасм

$$P_{l;j}^{\kappa+1} = P_{l;j}^{\kappa} + \left(\frac{P_{2;j}^2 - P_{l;j}^2}{2HX^2} - \frac{\left(9P_{l;j} - P_{2;j} - 8P_{j}\right) \cdot P_{j}}{3HX^2} + \frac{P_{l;j+1}^2 - 2P_{l;j}^2 + P_{l;j+1}^2}{2HY^2}\right) \cdot \frac{k \cdot \Delta t}{\mu \cdot \Pi OP}$$

Величину коэффициента проницаемости *k* можно определить, имся данные по газопроницаемости песка *GP*. Газопроницаемость, определяемая на стандартных приборах, имсет размерность

$$\frac{cM^{2}}{\frac{\Gamma}{cM^{2}} \cdot MH} = \frac{10^{-4} M^{2}}{98\Pi a \cdot 60 c} = 1,7 \cdot 10^{-8} \frac{M^{2}}{\Pi a \cdot c}.$$

$$GP = \frac{k}{\mu}, \quad \text{или} \quad k = GP \cdot \mu; \quad k = 1,7 \cdot 10^{-8} \mu (GP)_{c1}.$$

Приняв $\mu = 2,5 \cdot 10^{-5}$ Па · с, находим $k = 4,3 \cdot 10^{-13} (GP)_{c_1}$. Например, при $GP_{c_1} = 200$ имеем $k = 800 \cdot 10^{-13} \text{ м}^2$.

При выполнении расчетов шаг по времени должен выбираться исходя из обеспечения устойчивости расчетов и их приемлемой точности. Уравнение (6) можно записать в виде

$$P_{i;j}^{\kappa+1} = P_{i;j}^{\kappa} \cdot \left(1 - \left(\frac{1}{HX^2} + \frac{1}{HY^2}\right) \cdot \frac{k \cdot \Delta t \cdot P_{i;j}}{\mu \cdot \Pi OP}\right) + \frac{\left(P_{i+1;j}^2 + P_{i-1;j}^2\right) \cdot k \cdot \Delta t}{2HX^2 \cdot \mu \cdot \Pi OP} + \frac{\left(P_{i;j+1}^2 + P_{i;j-1}^2\right) \cdot k \cdot \Delta t}{2HY^2 \cdot \mu \cdot \Pi OP}.$$

Для обеспечения устойчивости расчетов все коэффициенты в этом уравнении не должны быть отрицательными, т. е.

$$1 - \left(\frac{1}{HX^2} + \frac{1}{HY^2}\right) \cdot \frac{\kappa \cdot \Delta t \cdot P_{i;j}}{\mu \cdot \Pi OP} \ge 0.$$

Исходя из этого устойчивость расчетов обеспечивается, если шаг по времени удовлетворяет условию

$$\Delta t \leqslant \frac{\mu \cdot \Pi OP}{k \cdot P_{i:j} \left(\frac{1}{HX^2} + \frac{1}{HY^2}\right)}.$$

Примем $P_{i;j} = 101234$ Па и $k/\mu = 1,7 \cdot 10^{-8} GP$, тогда

$$\Delta t \leq \frac{\Pi OP}{1,7 \cdot 10^{-8} GP \cdot 101234 \cdot \left(\frac{1}{HX^2} + \frac{1}{HY^2}\right)} = \frac{588 \Pi OP}{GP\left(\frac{1}{HX^2} - \frac{1}{HY^2}\right)}.$$

При $\Delta t = \frac{300}{GP \cdot \left(\frac{1}{HX^2} + \frac{1}{HY^2}\right)}$ погрешность расчетов не превышает 2%.

Для примера определим шаг по времени для следующих условий: GP = 250, HX = 5 мм, HY = 5 мм и ПОР = 0,4.

$$\Delta t = \frac{300 \cdot 0.4}{250 \cdot (\frac{1}{0.005^2} + \frac{1}{0.005^2})} = 0,000006 \text{ c}.$$

Хотя шаг по времени очень мал, реализация алгоритма расчетов по методу потоков на современных компьютерах характеризуется вполне приемлемой быстротой счега. Затраты машинного времени на один расчет не превышают 30–60 мин.

Библиографический список

1. Чуркин Б. С., Гофман Э. Б., Карпов В. В. Расчет кинетики плавления пенополистироловой модели в процессе заливки форм сплавом // Прогрессивные технологические процессы и подготовка кадров для литейного производства. Екатеринбург, 2003. С. 93–99.

2. Шуляк В. С., Рыбаков С. Д., Григорян К. А. Производство отливок по газифицируемым моделям. М.: РИЦ МГИУ, 2001. 324 с.

Б. С. Чуркин, А. Б. Чуркин, В. В. Сапронов, И. А. Бурунова

ОПТИМАЛЬНАЯ СКОРОСТЬ ЗАПОЛНЕНИЯ ФОРМ АЛЮМИНИЕВЫМИ СПЛАВАМИ ПРИ ЛИТЬЕ ПО ПЕНОПОЛИСТИРОЛОВЫМ МОДЕЛЯМ

При изготовлении отливок литьем по пенополистироловым моделям, как и при любом методе литья, для каждой отливки существует оптимальный диапазон значений скорости заливки формы сплавом, при котором обеспечивается получение качественных отливок.

$$V_{
m Muh} < V_{
m ont} < V_{
m Make}$$