- 2) элементы системы;
- 3) общий анализ произведения (композиционный замысел).

Учитывая сложность системы «композиция», необходимо, чтобы студенты рассмотрели информационно-уровневый подход к анализу данной системы. Для этого необходимо закрепить сведения, полученные по системе композиция, обобщив и структурировав их с помощью таблицы 4.

Литература

- 1. Бешенков С. А., Ракитина Е. А. Информатика. Систематический курс: Учеб. для 10-го класса / С. А. Бешенков, Е. А. Ракитина. М.: Бином, 2001. 432 с.
- 2. Бешенков С. А. Информатика. Систематический курс: Учеб. для 11-го класса гуманитарного профиля / С. А. Бешенков, Н. В. Кузьмина, Е. А. Ракитина. М.: Бином, 2002. 200 с.
- 3. Гейн А. Г., Ситникова Ж. Ю. О понятии уровни информации в курсе музыкальной информатики: Сб. статей, вып. 2. // Музыка в системе культуры. Урал. гос. конс., Екатеринбург, 2005. С. 34–57.
- 4. Гейн А. Г., Ситникова Ж. Ю. Информационный взгляд на музыкальные системы // Музыкальное образование детей и юношества: проблемы и поиски: Материалы 5-й науч.-практ. конф. студентов и мол. ученых музыкально-педагогического факультета. УрГПУ. Екатеринбург, 2006. 23–30 с.
- 5. Гейн А. Г., Ситникова Ж. Ю. К вопросу о «музыкальной информации» // Ученые записки НТГПИ. Естественные науки. Нижний Тагил, 2003. Вып. 5. С. 46–60.
- 6. *Назайкинский Е. В.* Музыка звуковой мир / Е. В. Назайкинский. Сов. музыка, 1986. № 11. С. 82–88.

С. Л. Долгушин

Омск

РАЗВИТИЕ КРЕАТИВНОСТИ МЛАДШИХ ШКОЛЬНИКОВ В УСЛОВИЯХ КОМПЬЮТЕРИЗАЦИИ МУЗЫКАЛЬНО-ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Определяющим условием эффективности модернизации российского образования на основе новых информационных ресурсов, технологий является соответствие информационно-инновационного процесса гуманитарной сущности современного социально-личностно-ориентированного воспитания и обучения. Уже на этапе целеполагания разработки и реализации информационно-образовательных проектов ориентация на возрожденные в отечественном образовании гуманистические ценности позволяет существенно ослабить противоречия когнитивной (технологически детерминированной) и креативной (эвристи-

чески детерминированной) идеологий образования. Достижение соразмерности развития технологической и эвристической компонентов образования, соответственно определяющих его информационный и гуманитарный характер, обеспечивает единство информационно-образовательного пространства в условиях вариативности современного образования, способствует устойчивому функционированию образовательных систем.

Потребность в концептуальной, теоретической разработке гуманитарных, психолого-педагогических аспектов информатизации образования при росте интенсивности применения новых информационных ресурсов, технологий в учебно-воспитательном процессе школ, дошкольных образовательных учреждений, учреждений дополнительного образования, учреждений профессионального образования и других типов образовательных учреждений страны, а также возрастание требований к качеству информационно-образовательных средств актуализирует исследовательскую научно-практическую деятельность с целью изучения, обоснования и реализации возможностей сохранения и развития продуктивно-творческого потенциала образования при оптимизации его инструментально-технологической базы.

Именно креативное образование, направленное на открытие, актуализацию ресурсов развития личности, утверждение смысло-жизненных мотивов, формирование креативных установок деятельности и т. д. способствует рождению творческой индивидуальности субъектов воспитания и обучения, выполняет главное предназначение образования — гуманитарное, приоритетное в современном, испытывающем сильное технократическое влияние, мире.

Изучение, обоснование новых информационных технологий в качестве средств актуализации, реализации творческого потенциала субъектов образовательной деятельности способствует разрешению методологических, теоретических проблем информатизации гуманитарного образования, разработке методических рекомендаций по внедрению информационных технологий в практику образовательных учреждений.

Развитие продуктивно-творческого потенциала учебно-воспитательного процесса – стратегически важная задача практически для всех видов образовательных учреждений. Необходимо помнить, что полученные знания, умения, навыки, а также развитость творческих, интеллектуальных способностей подрастающего поколения в дальнейшем определяют его высокую квалификацию и профессиональную культуру, составляют основу продуктивного (творческого) решения актуальных задач современного информационно-интеллектуального производства.

Тем не менее, несмотря на обилие материалов эмпирических исследований в области творческой деятельности, природа творчества недостаточно определена и представлена многообразием подходов, точек зрения. С психологической точки зрения, творчество определяется сложным системным взаимодействием различных психических процессов (восприятие, память, мышление, воображение, эмоции, мотивация и др.); на уровне личности проявляется свойствами: независимость, открытость новому опыту, чувствительность к проблемам, высокая

потребность к творчеству и др. Изучение информационных аспектов творчества способствует пониманию творчества как информационного процесса, движения, изменения, порождения новой информации под влиянием социально-культурных, личностных факторов, выступающего внутренним планом предметной, материально выраженной творческой деятельности. Возможность информационной интерпретации творческого процесса открывает перспективы поддержки творчества новыми информационными ресурсами, технологиями.

Среди новых информационных технологий, применимых в качестве средств актуализации, развития творческого потенциала субъектов образовательной деятельности, следует перечислить: гипертекстовые, графические, мультимедийные, виртуальной реальности, ГИС-технологии и др. Важным условием организации информационно-образовательной практики является адаптация, включение технологий в процесс развития способностей, личности, творческой индивидуальности, обеспечиваемый образовательной деятельностью, преобразования технологий в инструментальную основу творчества.

Возможности актуализации, развития творческой деятельности в информационно-образовательной практике определяются соответствием основных дидактических свойств новых информационных технологий необходимым условиям творческой деятельности. Развитие творческой деятельности средствами новых информационных ресурсов, технологий — основа реализации эвристического потенциала образования в условиях информационного общества. Понимание продуктивно-творческого потенциала образования в качестве стратегического ресурса развития современного общества требует комплексного подхода к проблематике модернизации образования на основе новых информационных технологий, актуализации гуманитарных исследований информатизации образования, в том числе образования музыкального.

В данном контексте приобретает актуальность проблема внедрения музыкально-информационных технологий в условиях специализированных музыкальных классов общеобразовательной школы, в первую очередь — на уровнях разработки методов психодиагностики продуктивного компонента музыкального мышления младших школьников.

Цель нашего исследования заключалась в выявлении методов компьютерной психодиагностики продуктивного компонента музыкального мышления детей младшего школьного возраста в условиях курса музыкальной информатики.

Среди задач:

- выявить специфику диагностики уровня развития продуктивно-творческого компонента музыкального мышления детей младшего школьного возраста на примере метода матричного компьютерного моделирования;
- экспериментально проверить эффективность разработанной технологии на уровне формирования продуктивно-творческого музыкального мышления и развития комплекса музыкальности в целом.

Апробация результатов эксперимента осуществлялась поэтапно на базе МОУ «Средняя общеобразовательная школа № 55» Кировского АО Омска как

в процессе занятий по музыкальной информатике, так и во внеурочное время на протяжении 2001–2005 гг.

В отличие от привычных заданий, выполняемых при помощи музыкального инструмента, предлагаемая нами технология нацелена на выявление природной музыкальности испытуемого при помощи компьютера и основана на технике матричного компьютерного моделирования.

Говоря о компьютерном моделировании, мы, прежде всего, подразумеваем двс основные методики: *семплирование* и *матричное компьютерное моделирование* (С. Л. Долгушин).

Многие программы, основанные на методе семплирования – трекеры (от англ. слова track – дорожка) сегодня можно использовать не только в развлекательных целях, но и в качестве серьезного инструмента для создания профессиональной музыки. Своему распространению (особенно в конце XX столетия) они обязаны активным творческим поискам музыкантов в сфере синтезаторной музыки и возможностью записи и воспроизведения оцифрованных сэмплов (образцов звучания реальных инструментов). Именно на основе семплов стало возможным создание оригинальных музыкальных композиций.

Чтобы понять работу программ-трекеров необходимо знать основы бытовой магнитной звукозаписи. К примеру, обычный магнитофон имеет две дорожки — два канала. Каждая дорожка обслуживает свой канал, а вместе они формируют стереосигнал. Если записать музыку на одну дорожку, то она будет слышна лишь через одну колонку.

Трекер – это аналог многодорожечного магнитофона, только кассеты он использует «виртуальные», создавая их образ в файле. Кроме того, аналоги всех основных функций трекера тоже можно найти в магнитофоне. При записи с микрофона вы получаете на ленте определенную последовательность сигналов в виде участков различной намагниченности. Точно так же и в трекере, для каждой колонки записывается последовательность команд. Интерпретирующая программа-проигрыватель, подобно магнитной головке в магнитофоне, переводит эти команды в звуковые импульсы определенной частоты и громкости.

Как любое музыкальное произведение, записанное на кассету, состоит из фрагментов звучания различных инструментов, так и в трекере с помощью команд на каждой из дорожек возможно воспроизведение семплов, которые были специально подобраны для соответствующей музыкальной композиции. Более того, можно изменять их параметры, такие как громкость и частота. В трекерах также предусмотрены специальные функции для изменения свойств групп семплов (инструментов).

В музыкальном модуле может быть максимально задействовано до 64 каналов-дорожек, а в некоторых редакторах и того больше.

Метод семплирования в программах-трекерах на настоящее время является одним из универсальных и перспективных по своей демократичности: возможность создания на компьютере музыкальных композиций как любителями, так и профессиональными музыкантами.

Матричное компьютерное моделирование. Само определение указывает на наличие компьютерной матрицы (специально приготовленного нотного стана) на основе которой моделируется (составляется) мелодия из предложенных модулей (модуль-блоков). Причем разработанная нами мультимедиа программа дает возможность не только увидеть ту или иную операцию, но и прослушать ход выполнения задания. Среди дополнительных возможностей — большой выбор тембров мелодических музыкальных инструментов (струнные, духовые, клавишные, ударные), которые потенциально могли бы исполнить составленную мелодию, а также автоаранжировщик (программа работает с форматами MIDI).

Выполнение диагностических заданий осуществляется при помощи мыши и не требует дополнительного использования клавиатуры, что намного упрощает сам процесс.

Во многом данный метод схож с семплированием. Однако матрица, как основа, представляет собой только один трек, заполняемый соответствующими только ей модуль-блоками (приготовленными одноголосными мелодико-ритмическими оборотами).

Если метод семплирования был связан с программами-трекерами, обеспечивающими размещение звуковых модулей на основе только слухового анализа (подходит – не подходит), то метод матричного моделирования предусматривает возможность визуального построения звуковых (нотных) модулей в единую логически выстроенную систему на основе конкретных педагогических или диагностических задач:

- 1) познание структуры, композиционного плана;
- 2) знакомство с музыкальной формой как процессом развития, ее тональными, тематическими признаками;
- 3) постижение многообразия строения музыкальной речи, основ тематического развития (экспозиционного, продолженного, разработочного), структурного значения мотива, фразы, предложения и т. д.;
- 4) диагностика и развитие *общих сенсорных* (в первую очередь музыкальный слух: мелодический, ладовый, гармонический; чувство ритма), *интеллектуальных* (музыкальное мышление в единстве его репродуктивного и продуктивного компонентов) музыкальных способностей.

Созданные, смоделированные в процессе работы мелодии в дальнейшем могут быть инструментованы (самостоятельно или при помощи программы «автоаранжировщик», например, Band-in-a-Box).

Разработанный метод матричного моделирования обеспечен на данном этапе оригинальной экспертной программой с комплектом заданий. Каждое задание — это одноголосная мелодия, художественная целостность которой в каждом из примеров определенным образом нарушена: в них могут быть вписаны неверные ноты, сделаны пропуски отдельных звуков или мотивов, или перестановки и пропуски небольших фраз.

В ходе решения задач, опираясь на свое музыкально-эстетическое чувство, испытуемый достраивает, дополняет мелодию, исправляет интонационные

неточности. Путеводной нитью здесь могут быть, с одной стороны, интуитивно постигаемые закономерности музыкальной структуры целого, принципы его художественной организации, с другой – полученный в процессе обучения определенный багаж теоретических и практических знаний.

Комплект состоит из 36 заданий трех уровней по 12 заданий в каждом: а) задания, строящиеся на умении работы в однотональном периоде без отклонений; б) задания, строящиеся на умении работы в однотональном периоде с отклонением в тональность первой степени родства; в) модуляционный период в тональность первой степени родства.

В 2001 г. впервые была проведена апробация комплекта музыкальных задач первого уровня в ходе комплексной диагностики музыкальных способностей учащихся младших классов в контексте реализации научно-исследовательского и учебно-образовательного проекта.

Комплект диагностических заданий был апробирован на формирующем этапе эксперимента во внеурочное время, а также во время проведения курса музыкальной информатики.

В процессе подготовки диагностического исследования был разработан оценочный критерий по 3-балльной шкале: каждый идеальный вариант – 2 балла, возможный – 1 балл, неверный или незаполненный вариант – 0 баллов.

Результаты тестирования определялись по общему количеству полученных баллов:

- 6-8 высокий уровень;
- 4-6 средний;
- 0-3 низкий.

Высокий уровень – показатель оптимального выбора приемов развития музыкального материала (простое повторение, вариантное проведение, образование производного, включение самостоятельного), верное определение кульминационной вершины и т. д.

Средний уровень – показатель, учитывающий наличие не более 45% ошибок.

Низкий уровень – показатель отсутствия логики развития музыкального мышления – более 45% ошибок.

Апробированный нами комплект диагностических заданий первого уровня (простой степени сложности) был представлен 12 матрицами и 8 модульблоками на каждую матрицу. Матрицы систематизированы внутри комплекта по характеру заданий связанного с той или иной спецификой структурной организации музыкальной формы (составом построения, структурой членения: мотив, фраза, предложение).

Простые задания – матрицы, подготовленные для моделирования в простых размерах (2/4, 3/4) в тональностях, не имеющих ключевых знаков (До-мажор –

¹ Задания средней сложности – матрицы для моделирования в сложных размерах (4/4, 6/8, 9/8), в тональностях до 3-х ключевых знаков. Известные принципы развития мелодического материала, типы развития. Сложные задания – матрицы для моделирования с использованием известных размеров, принципов и типов развития в тональностях до 5 ключевых знаков.

ля-минор), с использованием, в своем преимуществе, таких принципов развития мелодического материала как: точное и измененное (вариантное) повторение; образование производного мотива; включение самостоятельного мотива.

Рассмотрим некоторые особенности матричного моделирования (заданий первого уровня простой степени сложности), используемые нами в процессе тестирования.

Ниже представлена матрица № 1 (см. рис. 1) и прилагаемые к ней 8 модуль-блоков, расположенных в произвольном порядке (см. рис. 2).

Рис. 2. Модуль-блоки

Задача: заполнить пустые места в матрице, выбрав соответствующие развитию мелодической линии модуль-блоки (мотивы) с определением кульминационной вершины.

Предполагаемые принципы развития:

1) точное, 2) вариантное повторение, 3) производный мотив, 4) включение самостоятельного мотива.

Необходимо указать, что в процессе диагностики и обучения каждая матрица может иметь несколько вариантов заполнения (но не больше 2-х), т. е. пропущенным тактам могут соответствовать несколько модуль-блоков. Их выбор зависит от конкретно поставленных задач. Например: 1) использовать точное и вариантное повторение мотива или 2) включение производного и т. п.

Задание может выполняться двумя способами: 1) путем аудиального (слухового) подбора (для учащихся, не владеющих элементами нотной грамоты) и 2) путем аудиовизуального (слухо-зрительного) выбора модуль-блока.

Из данных модуль-блоков идеально соответствуют матрице № 1 в варианте № 1–7, 8, 3, 6 (точное и вариантное повторение); в варианте № 2–5, 2, 1, 6.

В конечном итоге, результаты заполнения матрицы анализируются компьютерной программой, выступающей в качестве эксперта.

Аналогичный процесс происходит и с заполнением других матриц. Например, матрица № 2 (см. рис. 3–4), в том числе с пропущенными более крупными построениями музыкальной формы, как, например, предложение (см. рис. 5–6):

Рис. 3. Матрица № 2

Рис. 4. Модуль-блоки

Рис. 5. Матрица № 7

Рис. 6. Модуль-блоки

Необходимо указать на то, что в процессе матричного мелодического моделирования наряду с диагностикой продуктивного компонента музыкального мышления и уровня развития мелодического слуха происходит диагностика таких сенсорных музыкальных способностей как ладовый и гармонический слух. Рассмотрим на примере решения задачи третьего уровня более подробно в идеальном варианте последовательности модуль-блоков.

Итак, матрица (см. рис. 7) представляет собой по форме модулирующий период (До-мажор – ля-минор) с пропущенными мелодическими оборотами (2, 4, 6, 8 такты):

Рис. 7. Матрица № 5

Ниже (см. рис. 8) представлено 8 модуль-блоков. Четыре из них должны заполнить пропущенные такты (2, 4, 6, 8).

Рис. 8. Модуль-блоки

Из 8 модуль-блоков:

- 1) идеальный вариант в последовательности: 2-7, 4-1, 5-4, 8-8;
- 2) допустимый вариант (2-2, 4-1, 5-4, 8-8) или (2-1, 4-2, 5-4, 8-8);
- 3) варианты 3, 5, 6 не подходят в любой последовательности.

Заполненная матрица имеет следующий вид:

Рис. 9. Заполненная матрица

Мы видим, что развитие мелодического материала строится на двух основных принципах – измененное повторение (секвенция) – $a-a^1$ (первое звено секвенции 1-2 тт.; второе – 3-4 тт.) и включение самостоятельного (5-8 тт.).

¹ Задания данного уровня в процессе работы с учащими апробированы не были и приводятся лишь для более полной характеристики метода.

Первое предложение звучит в тональности До-мажор. Функциональногармоническая структура может быть представлена последовательностью:

Рис. 10. Функционально-гармоническая структура

Второе предложение – в тональности параллельного минора (ля-минор), звучащего ладовым сопоставлением. Модулирующий аккорд – V13=t3 (5 т.). Функционально-гармоническая структура может быть выражена следующей последовательностью:

Рис. 11. Функционально-гармоническая структура

Таким образом, при решении задачи данного уровня необходим навык не только мелодического, но ладово-гармонического «предслышания», который, по нашим представлениям, можно также развить в процессе компьютерного матричного моделирования.

Комплект диагностических заданий был апробирован на констатирующем и формирующем этапах эксперимента.

В эксперименте приняло участие 27 учащихся, которые были разделены на 3 группы. За весь период эксперимента с каждой группой было проведено 12 диагностических занятий. За отведенное время (15–20 мин) дети должны были выполнить одно задание.

К началу эксперимента, благодаря имеющимся результатам тестирования креативности и диагностики музыкальных способностей контрольного класса на уроках музыки за три предыдущих года, мы имели возможность представить в динамике общую картину развития продуктивно-творческих способностей каждого учащегося. Данный материал представлял для нас определенную ценность в плане оценки уровня формирования способностей и выработки дифференцированного подхода в ходе опытно-экспериментальной работы.

Проектирование экспериментального исследования осуществлялось в точном соответствии с целью и задачами программы «Мир музыки». К началу эксперимента учащиеся экспериментального класса добились определенных результатов по следующим параметрам:

• были сформированы первоначальные представления и понятия, эстетическое отношение к музыкально-звуковой деятельности (93,5%);

- освоены выразительные особенности ритмической лексики, длительности и паузы (целая, половинная, четвертная восьмая) в различных сочетаниях (37%);
- учащиеся имели навык ритмизации поэтических текстов, основанных на определенных ритмических формулах (дробление, суммирование) и закрепление их в ритмической игре «эхо» (46,2%);
- могли исполнить любой простейший вид остинато и использовать его в качестве аккомпанемента к выученным песням (84,5%);
- были способны выбрать на основе ритмизованного текста комплементарный ритм (74%);
 - могли записать сочиненный ритм на «нитке» (69,6%);
- исполнить ритмический рисунок по специальным таблицам, карточкам, простейшим ритмическим партитурам (69,7%);
- осознанно использовать в процессе музицирования простые размеры (2/4, 3/4) (42%);
- имели навык построения ритмической импровизации на основе ассоциативного восприятия цветовых пятен, абстрактных рисунков, произведений изобразительного искусства (59%);
- овладели выразительными особенностями музыкальных регистров (92%);
- освоили мелодические интервалы (мелодические формулы) путем образного сравнения (выразительные особенности музыкальных интонаций) (87,7%);
- имели представления об особенностях строения мелодии, простейших элементах формы (мотив, фраза, предложение, период), а также элементарных принципах мелодического развития (простое повторение, измененное повторение), понятиями («секвенция», «кульминация») (42,8%);
- произошло развитие мелодического мышления и ощущения формы в процессе игр, творческих упражнений («эхо», «вопрос ответ») на звуковысотных элементарных музыкальных инструментах ксилофонах, металлофонах, колокольчиках, а также фортепиано (27,7%);
- осознанно применяли освоенные мелодические (ритмо-мелодические) формулы в процессе мелодической импровизации или моделирования (импровизация на орф-инструментах в пределах пентатоники на фоне мелодического остинато) (27,9%);
 - умели сочинять мелодию на заданный текст (34%);
- хорошо развитое ассоциативно-образное мышление при передаче особенностей характера мелодии, регистра звучания, ладовой окраски, темпо-ритма и т. д.) в пластике, выборе элементарных танцевальных движений (68,4%);
- осмысленное применение выразительных качеств гармонии (консонирующих и диссонирующих созвучий) в своих небольших сочинениях и инструментальных импровизациях (34,9%);

• выбор простейшей фактуры (фактурного рисунка) аккомпанемента на фортепиано, орф-инструментах в зависимости от характера мелодии, ее образного содержания (аккордовая, «разложенная») (39,7%).

Из вышеприведенных данных наш научный интерес, в большей степени, был направлен на музыкально-художественную деятельность учащихся, непосредственно касающуюся уровня развития продуктивного компонента, в том числе – логики построения элементарных музыкальных композиций, осознанного выбора тех или иных средств музыкальной лексики.

Приведенный показатель (27,7%) не являлся определяющим в условиях общеобразовательного учреждения, но, тем не менее, он послужил своеобразным стимулом к разработке компьютерного диагностического метода, нацеленного как на определение уровня развития данного составляющего, так и музыкальности учащихся в целом.

Перед началом эксперимента с каждой группой учащихся было проведено 4 подготовительных занятия в компьютерном классе. Дети знакомились с особенностями работы с персональным компьютером, а также спецификой предлагаемой программы.

На этапе констатирующего эксперимента (2 занятия) детям было предложено выполнить пробные задания, связанные с заполнением матриц модуль-мотивами.

Результаты показали, что, несмотря на общий интерес к процессу заполнения матриц, с заданием справились только 39%. Причем трудность в выполнении задания была и у детей, посещающих музыкальную школу. У 61% учащихся процесс носил пробующий характер. В большей степени их привлекла игровая ситуация — возможность озвучить модуль, а не включение в работу. Чем нелогичнее была последовательность, тем больший эмоциональный всплеск она вызывала.

Парашлельно на уроках музыки ребятам предлагалось сочинить «свой мотив» и записать его. Так был осуществлен выход на «музыкальные кубики», из которых дети могли сложить мелодию, спеть и сыграть ее на музыкальных инструментах.

Последующие занятия на формирующей стадии эксперимента были посвящены целенаправленной работе по развитию у детей продуктивного компонента музыкального мышления. Постепенно в ходе компьютерного моделирования у ребят повышалось как качество, так и скорость выполнения заданий. Мотивацией служила чаще всего положительная оценка компьютером сделанной работы. Некоторые учащиеся (22%) за отведенное время успевали сделать два задания на хорошем уровне.

На контрольном срезе, проводимом в конце первого года обучения, дети имели следующие показатели:

- полноценно справились с заданием 78,6%;
- допустили незначительные ошибки 21,4%.
- не выполнили задание 0%.

В ходе исследования положительные результаты развития у учащихся продуктивного компонента музыкального мышления нашли подтверждение в процессе ритмомелодического моделирования, импровизации на орф-инструментах на уроках музыки.

Ниже мы приводим таблицу со сравнительными показателями на начало эксперимента и проведение контрольного среза после первого года обучения:

№ п/п	Знания, умения, навыки	На начало эксперимента, %	На время контрольного среза, %
1	Освоение выразительных особенностей ритмической лексики	37	47,2
2	Сочинение и запись ритмического рисунка	69,7	74
3	Представления об особенностях строения мелодии, элементарных принципах ее развития	42,8	54,3
4	Развитое мелодическое мышление и ощущение формы	27,7	38,5
5	Умение сочинить мелодию на заданный текст	34	39

В результате изучения проблемы были выявлены особенности диагностики когнитивной сферы и уровня сформированности знаний и интеллектуальной одаренности детей младшего школьного возраста, а также специфика применения компьютерной диагностики музыкальных способностей детей.

На основании результатов экспериментальной деятельности было подтверждено предположение об эффективности метода матричного компьютерного моделирования в процессе психодиагностики музыкальных способностей и развития продуктивно-творческого компонента музыкального мышления учащихся младших классов на уроках музыкальной информатики в общеобразовательном учебном заведении. Данный метод безусловно имеет определенные перспективы в плане его реализации и дальнейшей научной разработки.

А. И. Глазырина, Е. Ю. Глазырина

Екатеринбург

ВОЗМОЖНОСТИ СЭМПЛЕРОВ ДЛЯ СОЗДАНИЯ МУЗЫКИ

Формат современной музыки немыслим без использования сэмплеров как универсальных инструментов. Они являются неотъемлемой частью оснащения любой современной студии звукозаписи.

Сэмплеры различаются по своим функциям и технологическим характеристика. Специалисты подразделяют их на несколько категорий. К первой они относят серьезные *студийные устройства*, имеющие все необходимые функ-