Литература

- 1. Глушков В. М. Теория автоматов: Семинар. Вып. II. Киев, 1963.
- 2. Колмогоров А. Н. Автоматы в жизнь // Кибернетика ожидаемая и кибернетика неожиданная. М., 1968.
- 3. Кулюткин Ю. Н. Информационная характеристика «эвристик»: Материалы III Всесоюз. съезда о-ва психологов СССР. Т. 1: Общая психология и психофизиология. М., 1968.
 - 4. Пушкин В. Н. Оперативное мышление в больших системах. М., 1965.

В. С. Тютюков, С. А. Тютюков

О ФОРМИРОВАНИИ УМЕНИЙ ПО АВТОМАТИЗАЦИИ ПРОЕКТИРОВАНИЯ ЭКОЛОГИЗИРОВАННЫХ ЛАБОРАТОРНО-ПРАКТИЧЕСКИХ ЗАНЯТИЙ

Специфика профессионально-педагогического образования обусловливает повышенные требования ко всем аспектам лабораторных работ. Одним из путей их совершенствования является экологизация - процесс ценностно-ориентационного влияния экологии как комплексной, интегративной науки, в частности, на педагогическое проектирование лабораторных работ. Ранее были указаны отличия экологизированной лабораторной работы от типовой [4]. При этом подразумевалось использование не только экологических сведений, но и информации по безопасности жизнедеятельности (БЖД). По-видимому, современный лабораторный практикум следует развивать с учетом достижений теорий инженерного творчества [1, 3, 5], которые оперируют критериями экологичности, безопасности, экономичности и др. Нами предложены также критерии информативности, гибкости практикума и качества усвоения студентами знаний [6]. Естественно, модернизация лабораторных занятий немыслима без изучения вопросов автоматизации педагогического проектирования, частичной автоматизации проектирования (компьютеризации) и приобретения учащимися соответствующих умений в указанных областях знаний. Формирование же умений тесно связано с проблемами теории поэтапного формирования умственных действий (ТПФУД). Наше исследование проводилось в соответствии с указанными направлениями.

Рис. 1. Типовая лабораторная работа

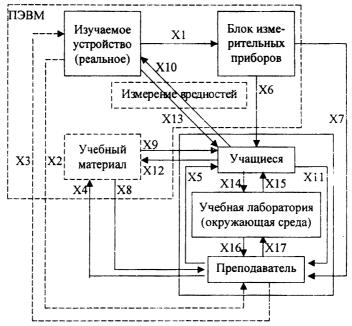


Рис. 2. Экологизированная лабораторная работа

Была разработана структура типовой и экологизированной лабораторных работ (рис. 1 и 2). Их составляющие связаны между собой информационными потоками X1-X17:

- XI физическая информация (сигналы) от устройства к приборам;
- X2 информация, полученная преподавателем от изучаемого устройства;
- X3 информация, передаваемая от преподавателя к устройству в виде управляющих воздействий;
 - Х4 новая информация, вносимая преподавателем в учебный план;
 - X5 информация, передаваемая от преподавателя к учащемуся;
 - Х6, Х7 информация, передаваемая в виде результатов измерений;
 - X8 известная информация, используемая преподавателем;
 - X9 известная информация, используемая учащимся;
- X10 информация, передаваемая от учащегося к устройству в виде управляющих воздействий в процессе выполнения лабораторной работы;
 - X11 информация, передаваемая от учащегося к преподавателю;
 - X12 информация, вносимая учащимся в учебный материал;
 - X13 информация о вредностях от изучаемого устройства;
- X14 информация, передаваемая в виде воздействия учащегося на учебную аудиторию (экологическое оформление);
- X15 информация, передаваемая в виде воздействия окружающей среды (лаборатории) на учащегося;
- X16 информация, передаваемая в виде воздействия окружающей среды (лаборатории) на преподавателя;
- $\bar{X}17-$ информация, передаваемая в виде воздействия преподавателя на учебную лабораторию.

В структуре лабораторной работы предусмотрен компьютерный блок (см. рис. 2). Компьютеризация лабораторной работы как элемент автоматизации ее проектирования включала разработку баз данных, компьютерных лабораторных работ, компьютеризированных методических комплексов и сопровождалась проведением педагогических исследований [6]. В частности, выяснялось отношение студентов к традиционной (типовой) и компьютеризированной (частично автоматизированной) лабораторным работам.

Было проведено анкетирование в двух группах студентов III и V курсов сварочной специализации УГППУ. Ими ранее выполнялись лабораторные работы по исследованию элементов автоматики в источниках питания для сварки, потому студенты имели возможность сравнить по ряду параметров типовую и компьютеризированную лабораторные работы. Для этого были разработаны соответствующие материалы. Ответы студентов сведены в табл. 1 и 2.

Лабораторные работы сравнивались по следующим параметрам: экологичности, информативности, удобству выполнения, уровеню усвояемости предъявляемого материала, испытываемым студентами эмоциям при выполнении, удобству использования методических указаний. Ответы были ранжированы по уровням оценки основных элементов анкеты: высокому, среднему и низкому.

Затем по формуле $\frac{n_{ij}}{n}$ 100% (где n_{ij} – число ответов по разделу i с уровнем оценки j, n – общее число ответов) рассчитали процентное соотношение ответивших студентов по ранжированным уровням.

Таблица 1 Результаты исследования отношения студентов к типовым лабораторным работам, в %

Параметр	Уровень оценки		
	высокий	средний	низкий
Экологичность	3,45	10,92	2,3
Информативность	4,6	11,49	0,57
Удобство выполнения	2,87	10,92	2.87
Уровень усвояемости материала	6,9	8,62	1.15
Позитивность эмоций при выполнении работы	7,47	6,9	2.3
Удобство использования методических указаний	4,6	10,92	1,15
Итого	29,89	59,77	10,34

Таблица 2 Результаты исследования отношения студентов к компьютеризированным лабораторным работам, в %

Параметр	Уровень оценки		
	высокий	средний	низкий
Экологичность	7,47	8,62	0,57
Информативность	7,47	8,62	0,57
Удобство выполнения	10,92	5,17	0,57
Уровень усвояемости материала	6,9	8,62	1,15
Позитивность эмоций при выполнении работы	12,64	2,87	1,15
Удобство использования методических указаний	12,64	3,45	0,57
Итого	58,04	37,35	4,58 .

Как видно, студенты в целом положительно относятся к лабораторному практикуму по дисциплинам «Источники питания для сварки» и «Автоматика и автоматизация технологических процессов». Доля ответов с низким уровнем оценки типовой работы составила 10,34%, для компьютерной соответственно 4,58%. Но в оценке типовой лабораторной работы преобладает средний уровень ответов (59,77%), а компьютерной – высокий (58,04%). Респонденты, как правило, предпочитают частично автоматизированные работы в плане экологичности, информативности, удобства выполнения, позитивности испытываемых при выполнении экспериментов эмоций. Тем не менее, эти положительные эмоции не отражаются, по мнению студентов, на уровне усвояемости учебного материала (по 6,9% ответивших дали высокую оценку и 8,62% средную оценку как типовой, так и компьютерной лабораторным работам). И это, скорее всего, справедливо, так как частичной автоматизацией не решить проблемы модернизации проектирования практикума как важного компонента профессиональнопедагогического образования. В целом студенты высказываются за частичное внедрение компьютерных лабораторных работ в дополнение к существующему практикуму. Представляется целесообразным выяснение отношения преподавателей к данной проблеме.

Более полная автоматизация проектирования лабораторного практикума, помимо обычной компьютеризации, подразумевает использование методологии

системного подхода [2]. В частности, можно отметить такие его перспективные (для целей настоящего исследования) варианты, как системы автоматизированного проектирования (САПР), теория решения изобретательских задач (ТРИЗ) и теория поэтапного формирования умственных действий [5, 6]. Нами было высказано предположение о необходимости совершенствования элементов методологии системного подхода (с позиций их экологизации) в тесной взаимосвязи с отбором и формированием соответствующих умений по автоматизации проектирования экологизированного лабораторного практикума. Например, следует развивать умения по применению: элементов системного анализа, компьютерных пакетов, педагогических программных средств, САПР, ТРИЗ, ТПФУД, экологических знаний, БЖД, методов активизации мышления и алгоритмизации, элементов педагогического проектирования; экологизации технических дисциплин, математической обработки результатов, элементов теории автоматического управления.

Трудно предположить, что перечисленные умения можно сформировать в рамках изучения дисциплин по существующим учебным планам. На наш взгляд, целесообразно разработать курс «Автоматизация проектирования экологизированных лабораторных практикумов».

Литература

- 1. Альтшуллер Г. С. Найти идею: Введение в ТРИЗ. Новосибирск, 1986.
- 2. Оптнер С. Л. Системный анализ для решения деловых и промышленных проблем. М., 1969.
- 3. Половинкин А. И. Основы инженерного творчества: Учеб. пособие для студентов втузов. М., 1988.
- 4. Тютюков С. А., Тютюков В. С. Особенности экологизированных лабораторных работ // Инновационные технологии в педагогике и на производстве: Тез. докл. 7-й регион. науч.-практ. конф. мол. ученых и специалистов, 24—25 апр. 2001 г. Екатеринбург, 2001.
- 5. Тютюков С. А., Тютюков В. С. Методика проектирования экологизированных лабораторно-практических занятий с помощью ТРИЗ и компьютера // На передовых рубежах науки и инженерного творчества: Тр. II Междунар. науч.-техн. конф. Регион. урал. отд. Акад. инж. наук РФ, 26—29 сент. 2000 г. Екатеринбург, 2000.
- 6. Тютюков В. С., Тютюков С. А. Разработка системы для компьютерной поддержки лабораторного практикума // Сварка Урала 2001: Тез. докл. 20-й науч.-техн. конф. сварщиков Урала, 27 февр. 2 марта 2001 г. Н. Тагил, 2001.