Библиографический список

1. Knap I., Sluzale A. Spawalnosc wysokowytrzymalej stali 25GSM w stanie ulepszym cieplie // Przeqlad spawalnictwa. 1988. 40, № 5-9.

2. Сварка и свариваемые материалы: Справ.: В 3 т. М., 1991. Т. 1.: Свариваемость материалов.

3. Технология электродуговой сварки / Под ред. Б. Е. Патона. М., 1972.

А.В.Шитиков, С.А.Шитиков

ЦИКЛИЧЕСКОЕ ДЕФОРМИРОВАНИЕ УПРУГОПЛАСТИЧЕСКОГО УПРОЧНЯЮЩЕГОСЯ ТЕЛА

При численном решении задачи циклического деформирования используется модель упрочняющегося упругопластического тела, впервые предложенная в работе [1] и подробно исследованная и конкретизированная в работах [2, 3]. В работе [2] рассматривается случай малых деформаций, когда справедливо разложение полных деформаций $\varepsilon_{ii} = 0.5 \left(\frac{\partial u_i}{\partial x_i} + \frac{\partial u_i}{\partial x_i} \right)$ в виде суммы упругих *е* и пластических *p*: $\varepsilon = e + p$. Здесь $u(x, t) = x(t) - x_0$, t – время, x, x_0 – вектора текущего и начального положения материальной точки в декартовой системе координат. Для тензора р постулируется $\dot{p}(x,t) = 0$ при разгрузке. Точка сверху означает материальную производную по времени. Под разгрузкой подразумевается, что для рассматриваемого материального элемента выполняется $\phi < 0$, где $\phi = 0 -$ уравнение поверхности нагружения. В качестве параметров состояния среды принимаются тензоры е, р, энтропия на единицу массы S и тензор внутренних переменных k, с помощью которого описывается часть мощности диссипации механической энергии, условно названная энергией, идущей на перестройку «внутренней структуры» элемента. Лля этого тензора также постулируется $\vec{k} = 0$ при разгрузке. В качестве математического выражения II начала термодинамики часто принимается неравенство Планка:

$$P = T\dot{S} + \rho^{-1}I \cdot \partial q / \partial x \ge 0, \qquad (1)$$

где T – абсолютная температура; ρ – плотность; q – вектор потока тепла; I – единичный тензор; $A \cdot B = A_{ij}B_{ij}$. В рассматриваемой модели наряду с нера-

венством (1) требуется выполнение условия неотрицательности мощности диссипации механической энергии:

$$D = P + F_k \cdot k \ge 0, \quad F(e, p, k, T) = U(e, p, k, T) - TS.$$

F и U- свободная и внутренняя энергии на единицу массы, (…)_A = ∂ (…)/ ∂A_{ij} . Слагаемое $F_k \cdot \dot{k} = U_k \cdot \dot{k}$ – часть диссипации, идущая на перестройку «внутренней структуры» элемента [1]. Из закона сохранения энергии $\rho \dot{U} = \sigma \cdot \dot{\epsilon} - I \cdot \partial q / \partial x$ и требования D = P = 0 при разгрузке следует связь напряжений σ с параметрами состояния $\sigma = \rho F_e$. Считая эту связь справедливой и при активном нагружении, имеем $D = (F_e - F_\rho) \cdot \dot{p}$ [2]. Для случая пластически несжимаемой среды p = p, k = k, где $\overline{A} = A - A \cdot I / 3$. Разложение свободной энергии и связь $\sigma = \sigma(\overline{e}, k, T)$ записаны в виде

$$F(e, p, k, T) = a_0(T - T_0) + \frac{a_1}{2}(I \cdot e)^2 + \frac{a_2}{2}\overline{e} \cdot \overline{e} + \frac{a_3}{2}p \cdot p + a_4p \cdot k + \frac{a_5}{2}k \cdot k + \frac{a_6}{2}(T - T_0)^2 + a_7(T - T_0)I \cdot e + a_8k \cdot \overline{e},$$

$$\sigma = \rho \Big[a_1(I \cdot e)I + a_2\overline{e} + a_7(T - T_0)I + a_8k \Big].$$
(2)

Из (2) видно, что в общем случае нет совпадения пластических деформаций с остаточными, так как при $\overline{\sigma} = 0$ имеем $\overline{\epsilon}_{oc1} = -(a_8/a_2)k + \overline{p}$. Уравнения упругопластичности при изотермическом процессе строятся из требования экстремальности функционала Лагранжа:

$$\int_{t_1}^{t_2} L dt = \int_{t_1}^{t_2} [D - \lambda \varphi] dt.$$
(3)

 $L = L(p, k, \dot{p}, t), \lambda$ – неопределенный множитель Лагранжа. Экстремаль функционала (3) ищется варьированием по *p* и *k* при фиксированных $p(t_1) = p_1, p(t_2) = p_2$, произвольных $k(t_1)$ и $k(t_2)$. Считается заданным путь в пространстве напряжений или полных деформаций. Условия трансвер-

сальности при этом выполняются автоматически. Уравнения Эйлера-Лагранжа для функционала (3) дают

$$a_4 \dot{p} = -\lambda \varphi_k, \ a_4 \dot{k} = \lambda \varphi_p + \rho_0^{-1} \dot{\overline{\sigma}}, \tag{4}$$

где задавался путь в пространстве напряжений, $\phi(\overline{\sigma}, p, k)$. Для задания модели требуется определить вид поверхности нагружения и множитель λ . Как показано в [2], требование независимости определяющих уравнений упругопластичности от пути (напряжений или полных деформаций), в котором изначально задается процесс деформирования, накладывает определенные ограничения на вид поверхности нагружения, с учетом которых

$$\varphi(\overline{\mathbf{\sigma}}, p, k) \equiv \psi(\overline{\mathbf{\epsilon}}, p, k) \equiv \tilde{\varphi}(\overline{\mathbf{e}}, p, k) = \kappa \cdot \kappa - c_2 p \cdot p - \kappa_0^2 = 0,$$

$$\kappa = a_2 \overline{e} - (a_4 - a_8)k - c_1 p,$$

где c_i , κ_0 — материальные константы. Вышеупомянутые ограничения приводят к тому, что условие $\dot{\phi} = 0$ (при активном нагружении) оставляет множитель Лагранжа λ неопределенным.

Уравнения (4) принимают вид

$$\dot{p} = 2\lambda\kappa,$$

 $\dot{k} = -2\lambda(a_4 - a_8)^{-1}[(c_1 + a_2)\kappa + c_2p] + a_2(a_4 - a_8)^{-1}\dot{\epsilon}.$

Введем далее функцию параметров состояния *n*, определением которой служит равенство $D = n\psi_{\varepsilon} \cdot \dot{\overline{\epsilon}}$. Из условия активного нагружения $\psi_{\varepsilon} \cdot \cdot \dot{\overline{\epsilon}} \ge 0$ следует, что для выполнения неравенства диссипации $D \ge 0$ необходимо и достаточно $n \ge 0$. λ однозначно выражается через *n*: $\lambda = a_2 n (\psi_{\overline{\epsilon}} \cdot \dot{\overline{\epsilon}}) / ((F_{\overline{\epsilon}} - F_{\overline{\rho}}) \cdot \psi_{\overline{\epsilon}})$. Отсюда видно, что уравнения упругопластичности (4) удовлетворяют требованию инвариантности относительно масштаба времени, если функция *n* является однородной нулевого порядка относительно скоростей параметров состояния. Будем полагать, что *n* является функцией (или функционалом) только параметров состояния и не зависит от их скоростей. Введем параметр $\mu\sigma$ по определению: $\mu_{\sigma} = (\rho_0 a_2)^{-1} (\psi_{\overline{\epsilon}} \cdot \cdot \overline{\sigma}) / (\psi_{\overline{\epsilon}} \cdot \cdot \overline{\epsilon})$. μ_{σ} связан с утлом наклона касательной к кривой $\sigma - \varepsilon$ при простом растяжении (сжатии), кручении. При $\mu_{\sigma} = 1$ этот угол

совпадает с углом наклона упругого участка, а при $\mu_{\sigma}=0$ равен нулю. Для выполнения неравенства $P \ge 0$ при любых путях нагружения необходимо и достаточно [2]:

$$(1+\eta(1-\beta))\mu_{\sigma} \leq 1-\eta\beta, \ c_{2} = -a_{2}a_{4}/a_{8}, a_{5} = (a_{8}-a_{4})a_{8}/a_{2}, \ a_{8}/(a_{8}-a_{4}) \geq 0, \eta = a_{2}(a_{3}-c_{1})/c_{2}, \ \beta = a_{4}/a_{8} < 1.$$
(5)

Условия (5) не зависят от конкретного вида *n*. Из (5) следует, что число независимых материальных констант уменьшается на две единицы (с1 и а5 выражаются через другие константы). Константы а4 и а8 входят в определяющие уравнения только в виде комбинации $\beta = a_4/a_8$, что является следствием возможности изменения масштаба тензора k. Из a₈/(a₈ $a_{\downarrow} \ge 0$ следует также условие $\beta < 1$. Первое неравенство (5) ограничивает возможные значения. В работе [2] представлены соображения, из которых следует, что область изменения β должна быть ограничена условием $\beta < 0$. При этом условии угол наклона касательной к графику $\sigma - \epsilon$ простого нагружения первоначально изотропного тела в начальный момент активного процесса $\mu_{\alpha \mu} = \beta/(\beta - 1)$ больше нуля, но меньше упругого значения. Первое ограничение (5) представлено на рис. 1. На плоскости μ_σ – η выделяются три разрешенных квадранта (IV квадрант запрещен из-за возможности стягивания поверхности нагружения в точку). Каждому из них при простом нагружения первоначально изотропного тела соответствуют свои интервалы изменения η и c_2 . В I квадранте – $\eta \ge 0$, $c_2 > 0$, во II – $\eta < 0$, $c_2 > 0$, в III – $\eta < 0$, $c_3 < 0$. Материалам, соответствующим разным квадрантам, отвечают разные ограничения на возможные значения µ₀.

Рис. 1. Области возможного изменения материальных констант μ_{σ},η

Существует область значений η , c_2 , где $0 \leqslant \mu_{\sigma} \leqslant 1$ (I квадрант и часть III квадранта). Обычно подобное ограничение получают исходя из не имеющего термодинамического обоснования постулата Друкера. В другой части III квадранта допускаются значения $\mu_{\sigma} < 0$, соответствующие наличию падающих участ-ков на кривых $\sigma - \varepsilon$. Дальнейшее исследование потребовало конкретизации вида функции n. Пусть $n = n'a_2 \left[\left((F_{\overline{c}} - F_{\overline{p}}) \cdot \psi_{\overline{c}} \right) / (\psi_{\overline{c}} \cdot \psi_{\overline{c}}) \right]^2$. Такой выбор устраняет неограниченный рост параметра λ в случае, если $(F_{\overline{c}} - F_{\overline{p}}) \cdot \psi_{\overline{c}} \to 0$ и означает не более чем одну из возможностей конкретизации модели. В работе [2] найдены ограничения на $n': 0 \leqslant n' = \alpha N \leqslant N$, α , обеспечивающие выполнение неравенств $P \ge 0$, $\mu_{\sigma} \leqslant 1$ при любых процессах деформирования. N выражается только через a_2 , c_2 , η , β . В некоторых областях значений материальных констант найденные ограничения обеспечивают выполнение условия $\mu_{\sigma} \ge 0$. В других случаях это условие выполняется при дополнительных ограничениях на N.

При численном исследовании циклического нагружения в n'=aN введе<u>м зав</u>исимость от аналога параметра Одквиста *R*: $\alpha = \alpha_0 + \alpha_1 (1 - e^{-c_R \cdot R})$, $\dot{R} = \sqrt{\dot{k}} \cdot \dot{k}$. Это позволило описать циклически упрочняющиеся и разупрочняющиеся материалы. На рис. 2-6 приведены некоторые результаты численных расчетов. В [2] было показано, что І квадрант рис. 1 можно разбить на три зоны. В первой из них на кривой простого растяжения $\sigma - \varepsilon$ (кривая 1 на рис. 2a, b) выпуклость на участке активного нагружения направлена вниз. Для материалов второй зоны (кривая 2 на рис. 2 а, б) существует точка перегиба на графике $\sigma - \varepsilon$, но предел $\mu\sigma$ при $\varepsilon \rightarrow \infty$ больше $\mu_{\sigma 0}$. В третьей зоне (кривая 3 на рис. 2 *a*, *б*) $\lim \mu_a = \mu_{a0}$ и пластические деформации ограничены. Графики циклического растяжения-сжатия показывают существование предельного цикла как для циклически упрочняющихся, так и для циклически разупрочняющихся материалов. Для материалов первой зоны I квадранта предельным циклом является отрезок прямой, проходящей через начало координат (см. рис. 3). При достаточно малых значениях амплитуды продольной деформации первые циклы практически повторяют друг друга и лишь затем начинается циклическое упрочение. Такое упрочение наблюдается и при n' = const.

Графики простого и циклического нагружения для материалов, соответствующих II квадранту рис. 1 качественно напоминают графики для материалов первой зоны I квадранта.

а

Рис. 2. Графики $\sigma - \varepsilon$, $\mu_{\sigma} - \varepsilon$, при простом растяжении (I квадрант рис. 1): $\rho_0 = 1, k_0 = 100 \text{ МПа}, a_1 = 1,3 \cdot 10^5 \text{ МПа}, a_2 = a_4 = 1,6 \cdot 10^5 \text{ МПа},$ $\beta = -0,02, c_2 = (10c_1)^2, \alpha = 1, \eta = (a_2/\sqrt{c_2}) s_i; s_1 = 0,25, s_2 = 0,75, s_3 = 2;$ $a: 1 - \sigma_{x1}; 2 - \sigma_{x2}; 3 - \sigma_{x3}; 6: 1 - \mu_1; 2 - \mu_2; 3 - \mu_3$

Рис. 3. Графики: *a*: $\sigma - \varepsilon$; *b*: *p* - *t*. 10 циклов. ρ_0 , k_0 , a_1 , a_2 , a_4 соответствуют рис. 2, $\eta = 0, 1$ ($a_2/\sqrt{c_2}$) – первая зона I квадранта рис. 1, $c_2 = (0, 2c_1)^2$, $\beta = -0.7$, (*N* = 7,2), $c_R = 500$, $\alpha_0 = 0.2$, $\alpha_1 = 0.8$, $\varepsilon_{\text{max}} = 0,0015$

На рис. 4 показан график σ – ε циклического растяжения-сжатия для циклически упрочняющегося материала второй зоны I квадранта рис. 1.

Рис. 4. График $\sigma - \varepsilon$. 6 циклов. $\eta = 0,75 (a_2/\sqrt{c_2})$ – вторая зона I квадранта рис. 1, ρ_0 , κ_0 , a_1 , a_2 , a_4 соответствуют рис. 2, $c_2 = (c_1)^2$, $\beta = -0,03$, (N = 7,5), $c_R = 2 \cdot 10^3$, $\alpha_0 = 0,2$, $\alpha_1 = 0,8$

Кривые простого растяжения для материалов, соответствующих III квадранту рис. 1, показаны на рис. 5. Для этих материалов возможно наличие падающего участка на кривых $\sigma - \varepsilon$; пластические деформации ограничены.

Рис. 5. Графики $\sigma - \varepsilon$ (III квадрант рис. 1). ρ_0 , κ_0 , a_1 , a_2 , a_4 соответствуют рис. 2, $\alpha = 1, \eta = -1, c_2 = -(0,5c_1)^2, \beta = -s_i: s_1 = 1, s_2 = 1,5, s_3 = 0,5:$ $1 - \sigma_{x1}; 2 - \sigma_{x2}; 3 - \sigma_{x3}$

Рис. 6. Графики $\sigma - \varepsilon$. 5 циклов. ρ_0 , κ_0 , a_1 , a_2 , a_4 соответствуют рис. 2, $\eta = -3$, $c_2 = -(0,5c_1)^2 - III$ квадрант рис. 1. $\beta = -0,33$, (N=3), $\alpha_0 = 0,4$, $\alpha_1 = 0,6$, $c_R = 1,3 \cdot 10^3$

На кривой циклического растяжения-сжатия после прохождения упругого участка выпуклость направлена во внешнюю сторону от центра $\sigma = 0$, $\varepsilon = 0$ (см. рис. 6).

Представленные численные расчеты показывают, что, несмотря на относительную простоту модели, они описывают широкий класс материалов, которым соответствуют сложные кривые простого и циклического нагружений.

Библиографический список

1. Шитиков А. В. О вариационном принципе построения уравнений упругопластичности при конечных деформациях // Прикл. математика и механика. 1995. Т. 59, № 1.

2. Шитиков А. В., Шитиков С. А. Термодинамический подход к построению модели упрочняющегося упругопластического тела // Проблемы механики сплошных сред и элементов конструкций: Сб. науч. тр. к 60-летию проф. Г. И. Быковцева. Владивосток, 1999.

3. Шитиков С. А. Построение и исследование математической модели упрочняющегося упругопластического тела при малых деформациях. Автореф. дис. ... канд. физ.-мат. наук / Ин-т автоматизации процессов управления. Владивосток, 1998.