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Abstract. The well-known recommendations for the design of gas-vortex stabilization systems 

in metal-cutting plasma torches are considered. Various designs of such systems used in the 

series PMVR plasma torches developed by the authors are presented. It is noted that the 

method of efficiency assessment developed by the authors should be based on the calculation 

of the uniformity distribution of the gas flow velocity. The velocities are calculated in the 

control sections of the gas-air path in the plasma torch. Various simplified and precise 

estimation methods are proposed. The velocity distribution in control sections for various 

modifications of plasma torches are presented. Calculations are made based on the "cold" 

model of gas flow and its heating by a plasma arc. Recommendations are made on the choice 

of parameters for evaluating the effectiveness of gas-vortex stabilization in plasma torches. The 

advantages of the new modernized plasma torches, including those using narrow-jet plasma 

technology, in terms of the gas-vortex stabilization efficiency are demonstrated. The necessity 

of using several criteria for evaluating the effectiveness of plasma torches design is noted.  

1.   Introduction 

The development of plasma torches for air-plasma cutting, as is known [1, 2], was carried out in the 60s in 

the USSR (at the Avtogenmash, Institute of electric welding named after E. O. Paton, VNIIEESO), the 

USA, Japan, Germany and France. At the same time, the main parameters of metal cutting quality were 

determined. By the mid-70s, the basic principles of designing plasma torches were formulated and the first 

classifications were created, including various ways to stabilize the arc discharge [3, 4]. A characteristic 

feature of most designs used in DC arc plasma torches for metal cutting is the use of a gas-vortex 

stabilization (GVS) system of the plasma arc [1]. In the case of gas-vortex arc stabilization, gas is 

introduced into the electrode zone through the channels located tangentially to the walls of the arc chamber. 

Gas supply can be carried out using either one or two gas flows (working fluid) with different designs of 

swirlers. In a special device – a “swirler” – a spiral vortex flow is created that compresses the arc stream in 

the open part of the nozzle and in the arc channel and isolates it from the walls. The use of a vortex flow 

ensures gas mixing in the arc stream, intensifies plasma formation, and increases the voltage of the plasma 

jet. The tangentially swirled flow of plasma-forming gas (PFG) stabilizes the cathode spot, prevents 

shunting of the plasma arc and isolates the initial section of the plasma jet from the walls of the nozzle 
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channel. Also it forms the geometry and kinetic properties of the jet at the nozzle outlet, contributing, in 

addition to improving the above parameters and reducing the acoustic emission [5]. As noted in [6], the 

stabilization system must be linked to the shape of the electrode, and the stability of the cathodes used for 

air-plasma cutting strongly depends on the effect of the cathode spot stabilization within the 

thermochemical cathode insert created by the vortex system [1, 3]. 

To form a vortex flow in an arc chamber, swirling systems of various designs are used. They can take 

the form of cylindrical cartridge covering the cathode with threaded screw channels or collar with a hole 

whose diameter is close to the diameter of the nozzle forming channel. The slots of swirling system are 

forming the direction of the gas flow tangent to the circumference of the channel. According to the results 

of experiments conducted in the late 60s [7, 8], it was noted that to ensure the longevity of the electrodes 

and high stabilization of the arc position in the nozzle channel, it is necessary that the ratio of the gas 

velocity tangential component Vt to the axial V0, which is an indicator of the degree of gas spin, was within 

7–12. In this case, if Vt/V0<5, the electrode quickly burns out due to the effects of shunting (closing) the arc 

on the nozzle surface. However, many questions related to the dependence of the arc spot movement on the 

speed of the swirling gas flow were still insufficiently studied in those years. 

A large amount of experimental data on the study of the operation modes for various plasmatron 

designs was generalized and optimized by the end of the 70s at The Institute of Thermophysics under the 

leadership of academician M. F. Zhukov [9, 10]. Two design solutions were proposed for linear plasma 

torches with GVS: one- and two-chamber arc stabilization zone. It was noted that there is a radial gradient 

of gas density in the electric arc chamber, which leads to the appearance of an Archimedean force. This 

force pushes the arc stream into the axial zone of the channel when it is deflected from the axis by 

disturbing forces. The gas vortex flow stabilizes the arc until the wall-mounted turbulent layer penetrates 

the axial zone of the chamber. The use of two vortex chambers – the central (main) and butt-end 

(additional) allows avoiding the limitations inherent for a single-chamber plasma torch on the type of gas 

and current. This effect is due to varying gas flow rates supplied through the two chambers. Generalization 

of experimental data on cathode erosion made it possible to determine the best values of the circumferential 

gas velocity at the entrance to the vortex chamber at 150–200 m/s. 

In these works, there were presented the calculation of the electric arc chamber in the plasma torch. 

These calculations allow to define the flow geometry and parameters, to ensure reliable ignition and stable 

burning of the electric arc, excluding a heat lock channel during operation of the plasma torch. Based on the 

results of studies on the vortex chamber aerodynamics, conducted in a wide range of changes in the 

determining parameters, the following recommendations were made for the design of the plasma torch: 

1. Ratio of the cross-section area for the twist ring to the cross-section area of the output electrode 

diameter should be 3.5–5.  

2. Number of holes in the twist ring – at least four with a uniform location around the circle; the 

total area of the passage sections must be such that at a given full pressure and temperature of the 

supplied gas, its flow rate is about 0.3–0.5 the speed of sound. 

3. Length of tangential channels in the twist ring (to obtain a sharply directed gas jet) must be at 

least 3–4 calibers. 

4. Value of the interelectrode gap is selected based on the following conditions:  

 possibility of its breakdown by the oscillator voltage;  

 ensuring that there is no double arcing when cutting; 

 absence of gas-dynamic locking of the gas flow in the gap section. 

Compliance with these requirements ensures good GVS of the electric arc on the axis of the discharge 

chamber and reliable oscillator start-up of the device. It should be noted that these recommendations 

remain as the main principles of GVS designing in modern publications [11], but they require, in our 

opinion, analysis for the loss of pressure in the system and the uniformity of distribution of gas dynamic 

parameters (the flow rate and pressure of the PFG, etc.) in the vortex flow at the output from it with 

subsequent design corrections. Dynamic analysis also showed that the electric arc chamber of the plasma 

torch could be regarded as a heat nozzle, in which the gas is heated by the arc discharge [9], and therefore 
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in the design of arc chamber by gas-dynamic criteria, you must enter the correlation for thermal heating of 

gas flow. 

2.  Technique of researches  

The above arguments and design recommendations, as already noted, were formulated as a result of 

generalization of experimental data in the study of plasmatrons. At the same time, the above-mentioned 

works noted the absence of a strict theory of vortex flow in the electric arc chamber of the plasma torch. In 

this regard, it should be noted that by the end of the 90-ies of the XX century, the emergence of 

opportunities for automating numerical solutions to complex gas-dynamic problems allowed us to conduct 

a number of such developments and generalize the results [12–15]. These studies confirmed the effect of 

energy separation in a vortex tube due to high- and low-frequency instabilities associated with the 

formation of large-scale coherent shear vortex structures in the tube. It was also noted that in plasma 

torches with GVS, the average integral temperature of the jet increases with an increase in the degree of 

spin. In addition [14] using numerical analysis, it was investigated the effect of the ratio for inlet diameter 

tangential swirl gas injection nozzle to the diameter of swirl nozzles on the flow in the channel of the 

plasma torch and found the dimensions of the entrance holes at their various numbers (six and eight). 

However, a very simplified geometric model of the electric arc chamber was analyzed, and the solutions 

were in a two-dimensional approximation. 

Summing up the consideration of various well-known principles and methods of GVS designing, it 

should be noted that the problem of the plasma arc stabilization in plasma torches for metal cutting is multi-

factorial. In our opinion, there is a gap in the wide variety of research results that affect the efficiency of 

such plasma torches, related to the study of the gas flow uniform distribution factor across the plasma 

torches section, both in vortex and electric arc chambers. The research conducted earlier by the authors [3, 

16] showed that the applied methods of GVS in such plasmatrons do not ensure the proper uniformity of 

the PFG flow distribution along the cross section of the gas-air path (GAP), thereby reducing the efficiency 

of the plasmatron. As a result, the problem arises of studying this factor in standard and upgraded plasma 

torches, determining its physical and mathematical equivalent, which allows its use for the search for new 

design solutions that improve the operation of the plasma torches, the efficiency and application breadth of 

plasma cutting technologies. 

For this purpose, one- and two-flow plasma torches of the PMVR series with various systems of GVS 

are considered. As the base model for gas dynamic analysis, the PMVR -M plasmatron produced by 

company Polygon (Yekaterinburg) was selected (Figure 1 a), which has proven itself at many metallurgical 

and pipe production enterprises in the Ural region of the Russian Federation. 

 

Figure 1. PMVR-M plasma torch: a – working model, b – speed distribution by GAP.  

The uniform distribution of the PFG flow rate across the cross-section of the plasma torch channels is 

an important parameter that determines the efficiency of stabilization and shielding of the plasma arc, and 

ultimately affects the performance and quality of cutting, as well as the reliability of the plasma torch. This 

distribution was determined by numerical methods in the FlowWorks application of the SolidWorks 

software in the process of calculating the gas dynamic and thermo-physical parameters of the gas flow 

along the GAP of the plasma torch. When calculating the velocity distribution over the PMVR-M plasma 

arc (Figure 1 b), it is seen that the uneven distribution of the gas flow through the swirler channels is due to 
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an asymmetric gas supply to it through a small expansion chamber. This unevenness persists in the nozzle 

of the plasma torch, thereby affecting the efficiency and quality of its operation. 

Using symmetrical supply of plasma gas flow into GVS, two expansion chambers and swirlers with a 

stepped distribution of gas through the channels of GAP and a tangential flow of gas in the nozzle allows to 

increase the distribution uniformity in the nozzle of the plasma torch, to improve the kinematic and energy 

parameters of the arc plasma (jet) for the single-stream torches series PMVR-5. The PMVR-5.1 plasma 

torch (PMVR-2M in the former nomenclature) uses a system of gas dynamic filters (additional walls with 

perforations in the expansion chamber) and increases the size of the expansion chamber (Figure 2). In the 

PMVR-5.2 plasma torch (PMVR-3M in the former nomenclature), two swirlers and two expansion 

chambers (forming and stabilizing) are used – Figure 3, the PMVR-5.3 plasma torch is supplemented with 

a symmetrical gas supply to the expansion chamber (via 2 channels) and changing the geometry of the 

forming swirler – Figure 4. 

 

Figure 2. PMVR -5.1 plasma torch with the GVS. 

 

Figure 3. GVS of the PMVR-5.2 plasma torch. 

 

Figure 4. Experimental model of the PMVR-5.3 plasma torch (design elements). 

Additional compression of the plasma jet due to the flow of secondary gas in two-stream plasma torches 

(“narrow-jet plasma” technology) of the PMVR-9 series (Figure 5) allows to further increase the uniformity 

and kinematic characteristics of the plasma flow at a small distance over the nozzle of the plasma torch. 

Developed plasma torches of this type can significantly increase the productivity and energy efficiency of 

cutting technology, as well as improve the quality of cutting seams [17]. 

 

Figure 5. Experimental model of the PMVR-9.1 plasma torch (design elements). 

When evaluating the GVS efficiency in metal-cutting plasma torches, you can rely on several key 

indicators. First, you should pay attention to the implementation of the above recommendations on the 

ranges and ratios of gas flow rates in the nozzle of plasma torches. However, the width of the declared 
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speed ranges does not allow us to make a qualitative comparative analysis of various GVS designs, and, 

consequently, to identify their advantages and disadvantages. In this regard, as already noted, it is advisable 

to take as a key criterion the distribution of speeds and mass expenditures across the GAP section in the 

plasma torch. It is desirable that these distributions are sufficiently uniform already at the input to the 1st 

swirler of GAP. However, due to the fact that the main functions of the GVS system are performed in the 

nozzle, it is advisable to take the section at the input to the nozzle (near the plane of the butt-end surface of 

the cathode) and the section at the input to the cylindrical nozzle channel (the output section) as control 

sections (CS) for calculating. A similar principle is advisable to use in the system of two-stream plasma 

torches PMVR-9, using a double nozzle system (Figure 6). In addition to determining the gas-dynamic 

parameters, it is also advisable to calculate the temperature distributions in the CS, as well as to see the 

change in these parameters outside the plasma torch nozzle (within the interaction of the plasma jet with the 

metal surface). 

 

Figure 6. Location of the ring control sections (CS) in the PMVR-9.1 plasma torch. 

When calculating the uniformity factors, there are several problems associated with determining 

the geometry of the calculated trajectory, the number of calculated points, and selecting the uniformity 

criterion. It has been experimentally established that it is advisable to calculate along the middle line 

of the CS, using reasonable machine modeling capabilities (50–200 calculated points along the 

perimeter of the trajectory). If there is a shortage of time and machine capacity, it is possible to limit 

the calculation to 4 symmetrically located points (relative to the supply line of the PFG to the 

expansion chamber [16]), but due to the undulating nature of the speed distribution (Figure 7), the 

accuracy of determining the efficiency of GVS will be low. 

 

Figure 7. Velocity distribution in the control sections (CS) of the PMVR-9.1 plasma 

torch (Figure 6):a – in section 1, b – in section 2. 

Cathode

The main nozzle External nozzle

Cross section 2

Cross section 1
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In order to find a criterion for evaluating the degree of the flow distribution uniformity when 

analyzing a large number of control points, the obtained velocity distributions for various plasma 

torches were analyzed using statistical methods. A statistical hypothesis was made that the presented 

velocity dependencies obey either the normal or uniform distribution law of random variables. 

However, testing the hypothesis using the Pearson 2 criterion did not provide statistically significant 

confirmation. It was also not confirmed when analyzing other velocity distributions and when 

changing the frequency calculation intervals. For this reason, the parameters that are often used when 

processing large arrays of random variables were considered as criteria: 

1) Scope of variation 
max minR V V  , 

2) Ratio of variation max

min

V
L

V
 , 

3) Average linear deviation (ALD): 
1

/
n

i

i

a V V n


  , 

4) Mean square deviation (MSD): 
2

1

( ) /
n

i

i

S V V n


  , 

5) Coefficient of variation 
S

F
V

 . 

For large sample sizes (in our case n>40), S, where  is the dispersion of the random variable. 

It is obvious that the values of productivity, quality, energy efficiency and safety of metal cutting in 

comparison with the values achieved when working with other plasma torches will also be valid and 

experimentally confirmed parameters from the point of view of GVS efficiency. 

3.  Results of research and their discussion 

The results of calculations for a number of the GVS efficiency criteria for various plasma torches of 

the PMVR series are shown in Figure 8–10. The calculations considered 2 modes – “cold” (without 

arc heating) and “hot” (with arc heating), which allow to identify the influence of temperature on the 

efficiency of GVS.  

 

Figure 8. Average, maximum and minimum velocities in control sections (CS) of plasma torches 

(SW-serial swirler, NW-new (modernized) swirler): a – without heating, b – with arc heating. 
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Figure 9. Average linear deviations (ALD) of velocities in the control cross sections (CS) of plasma 

torches (SW-serial swirler): a-without heating, b-with arc heating. 

 

Figure 10. Coefficients of variation of velocity distributions in control sections (CS) of plasma torches 

(SW-serial swirler): a – without heating, b – with arc heating. 

Analyzing the presented results, as well as the design of the corresponding GVS systems, we can 

conclude that in fact all the models presented correspond to the recommendations stated at the 

beginning of this article. At the same time, the introduction of the changes described above in the GVS 

design allows to increase the flow rate of PFG in the plasma torch nozzle (Figure 8) for a number of 

plasma torch designs, thereby increasing the kinetic energy of the plasma jet and cutting performance. 

In addition, it can be concluded that a mandatory analysis of the GVS efficiency in the “hot” mode in 

which the advantages of modernized GVS systems are most significant (2–3 times lower than the 

values of ALD and F criteria – see Figure 9 and 10). Similar estimates should be made, obviously, for 

the two-stream plasma torch PMVR-9.1 in order to justify the effectiveness of its operation when 

heated by a plasma arc. A comparative analysis of other performance criteria generally confirms the 

conclusions presented here, however, in order to fully justify the effectiveness of a particular GVS 

design, it is likely to rely on several criteria at the same time, using, among other things, the 

experimentally determined values of productivity, quality, energy efficiency and safety of metal 

cutting mentioned above. Additional information about the effectiveness and applicability of a 

particular plasma torch can also be obtained by analyzing the distributions of plasma jet parameters 

outside the plasma torch nozzle (see the results obtained by the authors in [18]). 

4.  Conclusions 

It is obvious that the presented results are a justification for the use of machine modelling methods to 

determine the efficiency of the GVS system in metal-cutting plasma torches and the effectiveness of 

their design, in general. At the same time, it should be noted that to develop a full-fledged 

methodology for evaluating the GVS efficiency and design, a broader analysis of both various plasma 

torch designs and a wide number of parameters of their operation in various ranges is required. For 

example, to assess the quality of the cathode spot stabilization and focusing, a stabilization criterion 

can be used, consisting of the determining mode parameters: gas flow, the degree of confusability of 
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the vortex chamber, its diameter, and so on [19]. We should also pay attention to the relationship 

between GVS and the effect of small- and large-scale turbulent pulsations of the gas flow, which 

largely determine the probability of arc shunting and the stability for the plasma torch [10]. In this 

regard, we should also pay attention to the effect of high-frequency acoustic radiation [2], which is 

largely due to the appearance of this type pulsations. Gas consumption is also an important stabilizing 

factor that reduces the amplitude of arc vibrations and heat loss [20]. A full-fledged analysis of the 

GVS efficiency for metal-cutting plasma torches requires taking into account a large number of 

parameters and criteria mentioned in this article. 
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