Е. И. Хамзина
Е. І. Кhamzina
xei260296@mail.ru
Н. Ю. Стожко
N. Yu. Stozko
sny@usue.ru
ФГБОУ ВО «Уральский государственный
экономический университет», г. Екатеринбург

Ural State University of Economics, Ekaterinburg

ECO-FRIENDLY MATEPИAЛЫ ДЛЯ ЭЛЕКТРОХИМИЧЕСКИХ CEHCOPOB ECO-FRIENDLY MATERIALS FOR ELECTROCHEMICAL SENSORS

Аннотация. В статье рассматривается применение принципов «зеленой химии» в электрохимической сенсорике. Обсуждаются экологически чистые методы получения модифицирующих материалов для электрохимических сенсоров.

Abstract. The article discusses the application of "green chemistry" principles in electrochemical sensors. Environmentally friendly methods for obtaining modifying materials for electrochemical sensors are discussed.

Ключевые слова: зеленая химия, электрохимические сенсоры, графен, наночастицы.

Keywords: green chemistry, electrochemical sensors, graphene, nanoparticles.

В последнее годы химические исследования все больше ориентируются на новую концепцию «зеленой химии», которая направлена на экологическое «благополучие». Действительно, устойчивое развитие требует, чтобы химия играла ключевую роль в преобразовании старых технологий в новые «чистые» процессы, в разработке экологичных веществ и материалов. Одной из важнейших целей «зеленой» химии, как указано в седьмом её принципе, является проектирование и разработка подходов с низким воздействием на окружающую среду, без использования вредных растворителей и веществ.

Экологический мониторинг представляет собой комплексную систему оценки изменений состояния окружающей среды под воздействием антропогенных и природных факторов. особо привлекательны Электрохимические методы ДЛЯ экологического on-line мониторинга возможности проведения on-site, in-situ. анализа. из-за Электрохимические сенсоры, представляющие собой простые и миниатюрные устройства, легко встраиваемые в «носимую» электронику, широко используются в экологическом мониторинге [5]. Такие устройства обладают высокой чувствительностью и селективностью,

широким линейным диапазоном определяемых концентраций веществ, хорошими эксплуатационными характеристиками. Они открывают уникальные возможности для решения задач «зеленой» аналитической химии и обеспечивают эффективный экологический мониторинг при минимальном воздействии на окружающую среду.

Важным вектором развития электрохимической сенсорики является создание нового поколения сенсоров на основе экологически чистых растворителей, реагентов, электродных материалов, технологий [7]. Например, важным элементов сенсоров является неэлектропроводящая подложка, которую обычно изготавливают из плохо разлагаемых полимеров. Использование подложки из биоразлагаемого полимера вместо пластика способствовало бы решению экологической проблемы пластиковых отходов [2]. В последние годы успехи в изготовлении электрохимических сенсоров в соответствии с концептуальными стандартами зеленой химии и устойчивого развития были связаны с применением экологически чистых материалов и безопасных технологий. Замена органических растворителей, используемых во многих протоколах электроанализа, на экологически безопасные жидкости до сих пор остается актуальной задачей. В этом контексте ионные жидкости могут быть полезными как в качестве электролитов, так и в качестве каталитических сред, благодаря присущим им полезным свойствам, таким как высокая проводимость и химическая стойкость.

В «зеленых» электрохимических сенсорах активно используются экологически чистые модификаторы. В первую очередь, к ним следует отнести различные углеродные материалы. Углерод 🗆 один из самых распространенных элементов в биосфере, он играет решающую роль в разработке высокоэффективных современных материалов. Материалы на основе углерода обладают малым весом, высокой пористостью, жаростойкостью, кислото- и щелочестойкостью, стабильностью и хорошей проводимостью, что позволяет использовать для разработки электрохимических сенсоров. К углеродным наноматериалам относится графен, который можно получить из графитового углерода, биоугля или органических отходов, таких как пластик [4]. Совместный пиролиз биомассы и пластиковых отходов перспективен для крупномасштабного синтеза графена и полезен для утилизации пластика [3]. В качестве модификаторов электродов используют также и металлические наночастицы, которые, как правило, получают химическим восстановлением солей металлов с использованием токсичных реагентов. С целью уменьшения вредного воздействия токсичные соединения заменяют «зелеными» реагентами, например, растительными экстрактами, грибами, бактериями и водорослями [1]. Биосинтез обладает рядом достоинств: одностадийность, нетоксичность, экспрессность, низкая себестоимость. Синтезируемые таким способом наночастицы демонстрируют биосовместимость и применимость для медицинских и фармацевтических целей. Растительные экстракты с высокой концентрацией фитохимических веществ (дубильные вещества и флавоноиды), обладающих антиоксидантными свойствами, могут действовать как восстановители для получения не только отдельных наночастиц металлов, но композитных смесей. Например, экстракт листьев Justicia Adhatoda использовали в одностадийном «зеленом» синтезе для получения восстановленного оксида графена и серебряных наночастиц с контролируемым размером. Нанокомпозит показал превосходную электрокаталитическую активность в отношении окисления нитрит-ионов [6]. Простота, экологичность и эффективность выгодно отличается «зелёный» синтез от обычного химического способа получения наночастиц.

Таким образом, «зеленая» химия тренд новой эпохи, направленный на гармонизацию взаимодействия человека с природой. Принципы «зеленой» химии являются научной основой получения есо-friendly материалов, процессов и технологий. Применение «зеленых» подходов в интересах устойчивого развития обеспечит новое качество жизни и сохранит нашу планету для будущих поколений.

Список литературы

- 1. Eco-friendly synthesis of zinc oxide nanoparticles as nanosensor, nanocatalyst and antioxidant agent using leaf extract of P. austroarabica / Faiza A. M. Alahdal, Mohsen T. A. Qashqoosh, Yahiya Kadaf Manea et al. // OpenNano. 2022. Vol. 8. P. 100067. https://doi.org/10.1016/j.onano.2022.100067.
- 2. Polyethylene/ poly(3-hydroxybutyrate-co-3-hydroxyvalerate /carbon nanotube composites for eco-friendly electronic applications / D. F. Armada, V. G. Rodríguez, P. Costa et al. // Polymer Testing. 2022. Vol. 112. P. 107642. https://doi.org/10.1016/j.polymertesting.2022.107642.
- 3. Graphene-based nanostructures from green processes and their applications in biomedical sensors / R. Goodrum, H. Weldekidan, H. Li, A. Mohanty, M. Misra // Advanced Industrial and Engineering Polymer Research. 2023. https://doi.org/10.1016/j.aiepr.2023.03.001.
- 4. Sustainable Approach for Developing Graphene-Based Materials from Natural Resources and Biowastes for Electronic Applications / S. Jinda, R. Anand, N. Sharma et al. // ACS Applied Electronic Materials. 2022. Vol. 4. P. 2146–2174. https://doi.org/10.1021/acsaelm.2c00097.
- 5. A review of nanocomposite-modified electrochemical sensors for water quality monitoring / O. Kanoun, T. Lazarević-Pašti, I. Pašti et al. // Sensors. 2021. Vol. 21, iss. 12. P. 4131. https://doi.org/10.3390/s21124131.
- 6. Shaikh A., Parida S., Bohm S. One step eco-friendly synthesis of Ag-reduced graphene oxide nanocomposite by phytoreduction for sensitive nitrite determination // RSC Advances. 2016. Vol. 6. P. 100383–100391. https://doi.org/10.1039/C6RA23655C.

7. Electrochemical (Bio)Sensors: Promising Tools For Green Analytical Chemistry / P. Yáñez-Sedeño, S. Campuzano, J. M. Pingarrón // Current Opinion in Green and Sustainable Chemistry. 2019. Vol. 19. P. 1–7. https://doi.org/10.1016/j.cogsc.2019.01.004.