С. Н. Конев

КОМПЬЮТЕРНАЯ ЛЕКЦИОННАЯ ДЕМОНСТРАЦИЯ СВОЙСТВ ПОЛУПРОВОДНИКОВОГО ДИОДА

Конев Сергей Николаевич

koneff_s@mail.ru ФГАОУ ВПО «Российский государственный профессионально-педагогический университет», Россия, г. Екатеринбург

COMPUTER LECTURE DEMONSTRATION OF THE PROPERTIES OF SEMICONDUCTOR DIODE

Konev Sergey Nikolaevich

Russian state vocational pedagogical University, Russia, Yekaterinburg

Аннотация. Описана компьютерная модель для демонстрации свойств полупроводникового диода на занятиях курса физики.

Abstract. Described a computer model to demonstrate the properties of the semiconductor diode in the classroom physics course.

Ключевые слова: Полупроводниковый диод; компьютерная модель; курс физики.

Keywords: Semiconductor diode; a computer model; the physics course.

В данной статье описана компьютерная имитация лабораторной установки для исследования свойств полупроводниковых диодов. Эта компьютерная программа предназначена, как для лекционных демонстраций, так и для организации виртуального лабораторного практикума по квантовой механике в любой, оснащенной компьютерами, аудитории.

Описываемая программа максимально реалистично воспроизводит реальные условия физической лаборатории – на экране компьютера пользователь видит не только абстрактную электрическую схему включения диода для его исследования, но и детально проработанные приборы лабораторной установки со всеми их органами управления. Этим, описываемая программа, отличается от многочисленных компьютерных эмуляций и даже реальных лабораторных стендов, в которых суть происходящего в практикуме оказывается скрытой от учащегося. А его действия в ходе занятия, оказываются формальным набором неких переключений и настроек оборудования и компьютерных программ [1]. Здесь же, у каждого прибора присутствует даже кнопка включения «Сеть», без нажатия на которую не будет работать ни один экранный прибор (рис.1), и результаты действий с виртуальными приборами, немедленно и наглядно отражаются на индикаторах этой виртуальной установки.

На следующем рис.2, все приборы лабораторной установки показаны уже включенными. Появилась индикация токов и напряжений в цифровых табло приборов. Блок питания, в частности, предусматривает возможность смены полярности выходного напряжения, а также возможность регулирования выходного напряжения отдельно в каждом разряде (от тысячных долей вольта до десятков вольт) – имитация, реально существующих, подобных блоков питания.

Рисунок 1 – Виртуальная лабораторная установка, все приборы пока выключены

На том же рис.2 видна индикаторная стрелка возле изображения диода, подсказывающая, в каком направлении для электрического тока диод включен в схему – в прямом (открытый диод) или обратном (диод закрыт) при данной полярности выходного напряжения блока питания. Цифровые миллиамперметр и вольтметр показывают, соответственно, ток I через диод и падающее на нём напряжение U. В компьютерной программе «зашита» вольт-амперная характеристика некоего абстрактного диода, в соответствии с которой и осуществляется индикация показаний для тока I и напряжения U. В дальнейшем предполагается заложить в программу базу данных для набора ряда реальных диодов, выбираемых из списка по желанию пользователя.

Рисунок 2 – Все приборы лабораторной установки включены

Следующий рис.3 показывает и наличие экранных таблиц, в которых можно запоминать токи и напряжения диода как для прямого, так и для обратного токов. Благодаря этому, имеется возможность построения экранных графиков вольт-амперных характеристик диода (рис.4).

Рисунок 3 – Таблицы для записи результатов измерений

Рисунок 4 – Вольт-амперные характеристики диода по данным таблиц

Данная программа предусматривает также демонстрацию влияния температуры на характеристики диода. Для этого на экране выведено окно индикации температуры диода и кнопки для её регулирования («Уменьшить» и «Увеличить», рис.5, 6).

блок питания 0 2 6 8 0 (В) + + + + + + + + + + + + + + + + + + +									
Прямое напряжение (диод открыт)	Обратное напряжение (диод закрыт)	Открыть диаграммы Добав	ить результаты температурных измерений в таблицу						
U_OTKP_(E ↓ I_OTKP_(MA) ↓ TEMMEl ↓ 0.045 9,549 20 0.079 29,211 20 0.112 58,880 20 0.145 98,551 20 0.000 0,000 20	U_336Kp_ L_33Kp_(MA) Texnep: 0,000 0,000 20 -2,868 -1,519 20 -5,836 -1,638 20 -8,829 -1,711 20 -1,1,827 -1,727 20 -0,935 -0,647 20 * 0 0	Ток - температура (диод открыт) Температу - Цоткр(mA) - Ц_откр(B) - 0 17,693 0,066 10 18,694 0,066 20 19,695 0,066 40 22,895 0,066 60 23,995 0,066 80 26,195 0,066	Ток - температура (диод закрыт) Темпера - I_закр(тА) - U_закр(В) - 0 -0,030 -0,061 20 -0,051 -0,061 40 -0,073 -0,061 60 -0,095 -0,061 80 -0,118 -0,061 *						

Рисунок 5 – Таблицы прямого и обратного токов диода при разных температурах

Температура	диода (С)	80 Уменьши	ить	Увеличить	Устан	овить 20 С	
Открыть диаграммы Добавить результаты температурных измерений в таблицу							
Ток - температура (диод открыт) Ток - температура (диод закрыт)							
🖊 Температу 🗸	I_откр(mA) 🚽	U_откр(В) 🚽		Темпера 🗸	I_закр(mA) 🚽	U_закр(В) 🚽	
0	17,693	0,061		0	-0,030	-0,061	
10	18,694	0,061		20	-0,051	-0,061	
20	19,695	0,061		40	-0,073	-0,061	
40	21,895	0,061		60	-0,095	-0,061	
60	23,995	0,061		80	-0,118	-0,061	
80	26,195	0,061	*				
*			-				
Запись: 🖬 斗 🕇 и	136 🕨 🕅 🌬	Ҡ Нет фильтр	Зa	пись: И 🖂 1	из 5 🕨 🕨 🕬	Ҡ Нет фильтр	
Очистить таблицу				Очистить таблицу			

Рисунок 6 – Таблицы с результатами температурных измерений и органы управления и индикации температуры диода

Результаты измерений прямого и обратного токов в этом эксперименте заносятся в соответствующие таблицы, рис.6, по которым, затем, строятся соответствующие графики, рис.7. В частности, так можно исследовать температурную зависимость коэффициента выпрямления диода – отношение прямого и обратного токов при одинаковом падении напряжения на диоде.

В целом, данная программа – эмуляция лабораторного эксперимента с диодом, удобна для лекционных демонстраций, а также для организации виртуального фронтального лабораторного практикума в любой компьютерной аудитории. Это особенно полезно для работы преподавателя в различных филиалах его ВУЗа, как правило, не имеющих достаточной лабораторной базы для лабораторного практикума по физике.

Программа – эмулятор выполнена на базе оболочки Access пакета Microsoft Office, специально нацеленной на работу с табличными данными и построению соответствующих диаграмм, что, в сочетании с весьма «дружелюбным» интерфейсом Access, позволяет быстро и комфортно создавать любые демонстрации подобного рода, а также, при необходимости, оперативно их модифицировать.

Список литературы

1. *Леонов, В.Г.* Пакет программ MULTISUM как средство повышения эффективности преподавания курса «Электрические цепи и машина» / В.Г.Леонов // Современное технологическое образование в школе и педагогическом вузе: материалы XXI Междунар. науч.практ.конф., 2015 г./ МПГУ – Москва, 2015. – С. 230 -235.