Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.rsvpu.ru/handle/123456789/15255
Название: Nash equilibrium design in the interaction model of entities in the customs service system
Автор: Fedorenko, R. V.
Zaychikova, N. A.
Abramov, D. V.
Vlasova, O. I.
Дата публикации: 2016
Издатель: Gokkusagi LTD. STI.
Аннотация: The urgency of the analyzed issue is due to the importance of the use of economic-mathematical tools in the course of modeling the interaction of the entities in the customs service system that is necessary for the development of foreign economic activity (FEA) of any state. The purpose of the article is to identify effective strategies for the interaction between the participants of foreign trade activities with customs brokers. The leading method to the study of this issue is economic-mathematical modeling, allowing studying the process of making decisions while choosing the strategy of cooperation between the customs broker and his client. Results: the article suggests the mathematical model to optimize the management mechanisms of interaction between enterprises, engaged in foreign trade, and customs dealers. The data of this article may be useful in modeling interaction of the entities in the customs service system using the methods of game theory. The model of “customer - customs broker” is implemented as a bimatrix game. Assuming the noncooperativegame the authors solve the problem of finding Nash equilibrium in mixed strategies. © 2016 Fedorenko et al.
Ключевые слова: INTERNATIONAL ECONOMIC ACTIVITY
NASH EQUILIBRIUM
THE CUSTOMS SERVICE SYSTEM
THE GAME APPROACH TO ECONOMIC MODELING
ISSN: 1306-3030
SCOPUS: https://www.scopus.com/record/display.uri?eid=2-s2.0-84990052927&origin=resultslist
Располагается в коллекциях:Научные публикации, проиндексированные в SCOPUS и WoS

Файлы этого ресурса:
Файл Описание РазмерФормат 
IEJME_895_article_57cdc7db1e395.pdf509,24 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.