Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
https://elar.uspu.ru/handle/ru-uspu/56329Полная запись метаданных
| Поле DC | Значение | Язык |
|---|---|---|
| dc.contributor.author | Korobkov, S. S. | en |
| dc.coverage.spatial | USPU | en |
| dc.date.accessioned | 2025-07-09T20:40:58Z | - |
| dc.date.available | 2025-07-09T20:40:58Z | - |
| dc.date.issued | 2016 | - |
| dc.identifier.citation | Korobkov S. S. Projections of Finite One-Generated Rings with Identity / S. S. Korobkov // Algebra and logic. — 2016. — Vol. 55, iss. 2. — P. 128-145. | en |
| dc.identifier.issn | 0002-5232 | - |
| dc.identifier.issn | 1573-8302 | - |
| dc.identifier.other | ser1948@gmail.com | |
| dc.identifier.other | WOS:000382002800003 | |
| dc.identifier.uri | https://elar.uspu.ru/handle/ru-uspu/56329 | - |
| dc.description.abstract | Associative rings R and R' are said to be lattice-isomorphic if their subring lattices L(R) and L(R') are isomorphic. An isomorphism of the lattice L(R) onto the lattice L(R') is called a projection (or else a lattice isomorphism) of the ring R onto the ring R'. A ring R' is called the projective image of a ring R. Lattice isomorphisms of finite one-generated rings with identity are studied. We elucidate the general structure of finite one-generated rings with identity and also give necessary and sufficient conditions for a finite ring decomposable into a direct sum of Galois rings to be generated by one element. Conditions are found under which the projective image of a ring decomposable into a direct sum of finite fields is a one-generated ring. We look at lattice isomorphisms of one-generated rings decomposable into direct sums of Galois rings of different types. Three main types of Galois rings are distinguished: finite fields, rings generated by idempotents, and rings of the form GR(p(n),m), where m > 1 and n > 1. We specify sufficient conditions for the projective image of a one-generated ring decomposable into a sum of Galois rings and a nil ideal to be generated by one element. | en |
| dc.format.mimetype | text/html | en |
| dc.language.iso | en | en |
| dc.publisher | SPRINGER | en |
| dc.rights | info:eu-repo/semantics/openAccess | en |
| dc.source | Algebra and logic | en |
| dc.subject | FINITE RINGS | en |
| dc.subject | ONE-GENERATED RINGS | en |
| dc.subject | LATTICE ISOMORPHISMS OF ASSOCIATIVE RINGS | en |
| dc.title | Projections of Finite One-Generated Rings with Identity | en |
| dc.type | Article | en |
| dc.type | info:eu-repo/semantics/article | en |
| dc.type | info:eu-repo/semantics/publishedVersion | en |
| dcterms.audience | Other | en |
| dcterms.audience | Parents and Families | en |
| dcterms.audience | Researchers | en |
| dcterms.audience | School Support Staff | en |
| dcterms.audience | Students | en |
| dcterms.audience | Teachers | en |
| local.identifier.doi | 10.1007/s10469-016-9383-8 | - |
| local.identifier.oldhandle | http://elar.uspu.ru/handle/uspu/5253 | - |
| Располагается в коллекциях: | Научные публикации, проиндексированные в SCOPUS и WoS | |
Файлы этого ресурса:
Нет файлов, ассоциированных с этим ресурсом.
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.

