2. Емельянов А.А., Богатов Е.А., Клишин А.В., Медведев А.В., Симонович В.Г. Математическая модель линейного асинхронного двигателя на основе магнитных схем замещения // Молодой ученый. – 2010. – №5. – С.14–22.

3. Емельянов А.А., Медведев А.В., Богатов Е.А., Кобзев А.В., Бочкарев Ю.П. Программирование линейного асинхронного двигателя в МАТLAВ // Молодой ученый. – 2013. – №3. – С. 129-143.

4. *Ануфриев И.Е. и др.* МАТLАВ 7 / Ануфриев И.Е., Смирнов А.Б., Смирнова Е.Н. – СПб.: БХВ-Петербург, 2005. – 1104 с.

Емельянов А. А., Медведев А. В., Кобзев А.В. ФГАОУ ВПО «Российский государственный профессионально-педагогический университет», Екатеринбург

МОДЕЛИРОВАНИЕ ЛИНЕЙНОГО АСИНХРОННОГО ДВИГАТЕЛЯ С ЧИСЛОМ ПАЗОВ НА ПОЛЮС И ФАЗУ РАВНОМ ДВУМ НА ОСНОВЕ МАГНИТНЫХ СХЕМ ЗАМЕЩЕНИЯ

Математическая модель линейного асинхронного двигателя на основе магнитных схем замещения для исследования электромеханических переходных процессов приведена в статье [1].

Целью данной работы является изложение математической модели линейного асинхронного двигателя на основе электрических и магнитных схем замещения в доступной для понимания студентами форме. Данная работа является продолжением статьи [2], в которой опубликован без сокращения вывод математического аппарата. Для качественного восприятия системы в данной работе повторим основные моменты статьи [2] и покажем процесс перехода от выведенных формул к программированию в MATLAB.

Условное изображение линейного асинхронного двигателя приведено на рисунке 1 *а*. В активной зоне индуктора (статора) в началах обмоток *A*, *B* и *C* условно примем токи со знаком «+», тогда в соответствующих концах обмоток *x*, *y* и *z* — знак «–». Для учета отрицательных токов необходимо умножить соответствующие элементы матрицы A на (–1). В шунтирующих зонах под набегающим и сбегающим краями примем по четыре зубцовых деления. На рисунке 1 б приведена соответствующая магнитная схема замещения линейного асинхронного двигателя.

Запишем основные уравнения для «*n*»-ого участка схемы замещения.

Баланс магнитных напряжений магнитной цепи

 $\Phi_{n-} - \pi_{+} -$ контурные магнитные потоки;

 R_{n}, R_{n+} – магнитные сопротивления воздушных участков;

 $F_n^S = -$ магнитодвижущая сила, созданная статорным током i_n^S , протекающим по всем проводникам паза (ω);

 $F_n^S = -$ в шунтирующих зонах;

 $F_n^R = - M.Д.С.$ тока ротора в стержне ($\omega =$).

Баланс М.Д.С. для «*n*»-го участка имеет следующий вид:

$$F_n^S + = \cdot + - \cdot - \cdot$$

Отсюда ток в стержне ротора определится по следующему выражению:

$$i_n^R = - \dots + + + - + - + (1)$$

Уравнение баланса напряжений электрической цепи ротора

$$r^{r} \cdot + \cdot \frac{\partial}{\partial} + \cdot \cdot \frac{\partial}{\partial} - - \frac{\partial}{\partial} - \cdot \frac{\partial}{\partial}$$
 (2)

Выразим производные во времени через конечные разности:

$$\frac{\partial}{\partial}$$
 - Δ ∂ - Δ ,

где *n* – номер зубцового деления;

k – номер шага разбиения по времени.

В формуле 2 скорость подвижного элемента принимаем равным v = и в пределах «*k*» интервала считается постоянным.

Производные по пространственной координате «х» выразим через центральные конечные разности:

$$\frac{\partial}{\partial} - \frac{\partial}{\partial} - \frac{\partial}{\partial} - \frac{\partial}{\partial} - \frac{\partial}{\partial}$$

С учетом вышеприведенных замечаний уравнение (2) примет следующий вид:

Исключим из уравнения (3) токи в роторе. Для этого подставим выражение (1) в уравнение (3) и получим:

Это уравнение может быть реализовано при произведении матрицы A и матрицы-столбца, состоящего из 20 потоков (Φ) и токов в фазах обмотки индуктора. При изменении от n = 1 до n = 20 определяются элементы строк матрицы A по уравнению (4).

При подстановке в уравнение (4) значения n от 1 до 4 и от 17 до 20 определяются элементы строк матрицы A, соответствующие шунтирующим зонам двигателя. Рассмотрим формирование элементов 2-ой строки матрицы A. Для этого подставим n = 2 в уравнение (4), в результате получим:

Если задать n в уравнении (4) в пределах от 5 до 16, то это позволит определить элементы строк матрицы для активной зоны индуктора (статора). В качестве примера приведем уравнение (4) при n = 6:

Для элементов матрицы **A**, связанных с токами i_A^S , выделен 21-й столбец, поэтому:

$$a_{6,21} = \cdot \cdot \cdot - \cdot + \Delta$$

Аналогично, для токов *i*^{*s*}_{*C*} – 22-ой столбец:

$$a_{6,22} = - \dots \cdot \dots \cdot \dots \dots \cdot \dots$$

Формулы для расчета остальных элементов матрицы А для 6-ой строки будут иметь следующий вид:

Баланс напряжения электрической цепи индукторной (статорной) обмотки

Если питается обмотка индуктора от симметричного напряжения, а схема соединения звезда без нулевого провода, то:

С учетом шага по времени \triangle в *k*-ый момент времени:

Уравнения (5) при выражении производных по времени через конечные разности примут следующий вид:

Для определения элементов 21-ой строки матрицы А воспользуемся уравнением (6). Для удобства заменим $\omega_{-} \Delta = -$, тогда:

отсюда:

$$a_{21,5} = \dots = \dots = \dots = \dots = \\ a_{21,9} = \dots = \dots = \dots = \dots = - \\ a_{21,21} = + \Delta \\ a_{21,23} = - + \Delta$$

В правой части сформирован элемент *s*₂₁ матрицы-столбца **S**:

$$s_{21} = U \Psi \Phi_{5,k-1} + \Phi_{6,k-1} - \Phi_{9,k-1} - \Phi_{10,k-1} - \Phi_{11,k-1} - \Phi_{12,k-1} + \Phi_{15,k-1} + \Phi_{16,k-1} + (L^s / Dt) \Psi (i^s_{A,k-1} - i^s_{B,k-1}) + U_{AB,k}.$$

Известно, что в трехфазной обмотке сумма токов в фазах в *k*-ый момент времени равна нулю.

$$i_{A,k}^{s} + \dots + \dots =$$

В матричной форме это уравнение можно получить следующим образом. Так как в матрице-столбце токи i_a , i_b и i_c занимают положения 21, 22, и 23 соответственно, то в матрице А в 23-ей строке необходимо приравнять элементы $a_{23,1}$, $a_{23,2}$, ..., $a_{23,20}$ к нулю, а элементы $a_{23,20}$, $a_{23,21}$, $a_{23,23}$ к единице. То есть $a_{23,21} = = = = H s_{23} = .$

Результаты моделирования представлены в таблицах 1, 2 и 3, а также на рисунке 2.

						-	
<i>a</i> _{1,1}	1,313E+05	<i>a</i> _{1,2}	- 6,514E+04	<i>a</i> _{1,3}	-7,370E-04	<i>a</i> _{2,1}	- 6,514E+04
<i>a</i> _{2,2}	7,265E+04	<i>a</i> _{2,3}	- 6,514E+03	<i>a</i> _{2,4}	-7,370E-05	<i>a</i> _{3,1}	7,370E-03
<i>a</i> _{3,2}	- 6,514E+03	<i>a</i> _{3,3}	<i>8,165E</i> + <i>03</i>	<i>a</i> _{3,4}	- 6,514E+02	<i>a</i> _{3,5}	-1,474E-05
<i>a</i> _{4,2}	7,370E-04	<i>a</i> _{4,3}	- 6,514E+02	<i>a</i> _{4,4}	1,782E+03	<i>a</i> _{4,5}	- 1,303E+02
<i>a</i> _{4,6}	-1,474E-05	<i>a</i> _{5,3}	7,370E-05	<i>a</i> _{5,4}	- 1,303E+02	<i>a</i> _{5,6}	1,261E+03
<i>a</i> _{5,7}	- 1,303E+02	$a_{5,8}$	-1,474E-05	<i>a</i> _{16,14}	1,474E-05	<i>a</i> _{16,15}	- 1,303E+02
$a_{16,16}$	1,261E+03	<i>a</i> _{16,17}	- 1,303E+02	<i>a</i> _{16,18}	-7,370E-05	<i>a</i> _{17,15}	1,474E-05
<i>a</i> _{17,16}	- 1,303E+02	<i>a</i> _{17,17}	1,782E+03	<i>a</i> _{17,18}	- 6,514E+02	<i>a</i> _{17,19}	-7,370E-04
<i>a</i> _{18,16}	1,474E-05	<i>a</i> _{18,17}	- 6,514E+02	$a_{18,18}$	<i>8,165E</i> +03	<i>a</i> _{18,19}	- 6,514E+03
<i>a</i> _{18,20}	-7,370E-03	<i>a</i> _{19,17}	7,370E-05	<i>a</i> _{19,18}	- 6,514E+03	<i>a</i> _{19,19}	7,265E+04
<i>a</i> _{19,20}	- 6,514E+04	$a_{20,18}$	7,370E-04	<i>a</i> _{20,19}	- 6,514E+04	<i>a</i> _{20,20}	1,313E+05

Таблица 1. Значения элементов матрицы А при k = 1

$$a_{21,21} = \underbrace{a_{22,22}}_{=} = \underbrace{a_{22,22}}_{=} = \underbrace{a_{23,21}}_{=} =$$

$$a_{21,5} = a_{1,2} = a_{$$

Таблица 2. Значения элементов матрицы А при k = 2

						-	-
<i>a</i> _{1,1}	1,313E+05	<i>a</i> _{1,2}	- 6,514E+04	<i>a</i> _{1,3}	4,089E-02	<i>a</i> _{2,1}	- 6,514E+04
<i>a</i> _{2,2}	7,265E+04	<i>a</i> _{2,3}	- 6,514E+03	<i>a</i> _{2,4}	4,089E-03	<i>a</i> _{3,1}	-4,089E-01
<i>a</i> _{3,2}	- 6,514E+03	<i>a</i> _{3,3}	<i>8,165E</i> + <i>03</i>	<i>a</i> _{3,4}	- 6,514E+02	<i>a</i> _{3,5}	8,177E-04
<i>a</i> _{4,2}	-4,089E-02	<i>a</i> _{4,3}	- 6,513E+02	<i>a</i> _{4,4}	1,782E+03	<i>a</i> _{4,5}	- 1,303E+02
<i>a</i> _{4,6}	8,177E-04	<i>a</i> _{5,3}	-4,089E-03	<i>a</i> _{5,4}	- 1,303E+02	<i>a</i> _{5,6}	1,261E+03
<i>a</i> _{5,7}	- 1,303E+02	$a_{5,8}$	8,177E-04	<i>a</i> _{16,14}	-8,177E-04	<i>a</i> _{16,15}	- 1,303E+02
<i>a</i> _{16,16}	<i>1,261E+03</i>	<i>a</i> _{16,17}	- 1,303E+02	<i>a</i> _{16,18}	4,089E-03	<i>a</i> _{17,15}	-8,177E-04
<i>a</i> _{17,16}	- 1,303E+02	<i>a</i> _{17,17}	1,782E+03	<i>a</i> _{17,18}	- 6,515E+02	<i>a</i> _{17,19}	4,089E-02
<i>a</i> _{18,16}	-8,177E-04	<i>a</i> _{18,17}	- 6,514E+02	<i>a</i> _{18,18}	<i>8,165E</i> + <i>03</i>	<i>a</i> _{18,19}	- 6,514E+03
<i>a</i> _{18,20}	4,089E-01	<i>a</i> _{19,17}	-4,089E-03	<i>a</i> _{19,18}	- 6,514E+03	<i>a</i> _{19,19}	7,265E+04
<i>a</i> _{19,20}	- 6,514E+04	<i>a</i> _{20,18}	-4,089E-02	<i>a</i> _{20,19}	- 6,514E+04	<i>a</i> _{20,20}	1,313E+05

$$a_{11,21} = a_{1,22} = a_{1,22}$$

Таблица 3. Результаты расчетов

		<i>k</i> = <i>1</i>			k=2					
	X	S	$i_{n,k}^r$	$F_{n,k}$		X	S	$i_{n,k}^r$	$F_{n,k}$	
Φ_l	-5,91E- 08	-1,47E- 05	0,34	-2,08E- 06	Φ_l	-1,1E- 07	-4,64E- 05	0,49	- 5,66E- 06	
Φ_2	-1,18E- 07	-2,96E- 05	0,68	-2,36E- 05	Φ_2	-2,22E- 07	-9,33E- 05	0,99	- 6,38E- 05	
Φ_3	-7,30E- 07	-0,0001	4,21	-0,002	Φ_3	-1,36E- 06	-0,0005	6,06	-0,004	
Φ_4	-7,68E- 06	-0,002	43,74	-0,19	\varPhi_4	-1,39E- 05	-0,006	60,84	-0,42	
Φ_5	-8,60E- 05	-0,026	246,2 3	-1,06	Φ_5	-0,0001	-0,069	420,4 5	-2,94	
Φ_6	-9,21E- 05	-0,028	283,3 5	0,33	$arPhi_6$	-0,0001	-0,073	486,8 4	0,43	
Φ_7	-6,30E- 05	-0,015	173,8 6	0,38	$arPsi_7$	-0,0001	-0,049	354,8 8	1,002	
$arPhi_{8}$	-4,90E- 05	-0,012	95,33	0,44	$arPsi_8$	-9,58E- 05	-0,038	251,8 9	1,87	
Φ_9	2,79	0,012	-98,77	-0,46	Φ_9	2,48E- 05	0,023	-93,11	-0,72	
$\overline{\Phi_{I}}$	4,37	0,015	-191,7	-0,61	$\overline{{\pmb{\Phi}}_{l}}$	5,63E- 05	0,035	- 240,2	-1,48	

								4	
Φ_l	9,10	0,027	-273,1	-0,68	Φ_l	0,0001	0,072	- 448,8 7	-2,2
Φ_1	9,28	0,027	-287,1	0,41	Φ_1	0,0001	0,074	-492,3	0,62
Φ_1	6,31	0,015	-174,4	0,38	Φ_1	0,0001	0,049	-356,1	1,01
Φ_l	4,92	0,012	-96,51	0,44	Φ_l	9,62E- 05	0,038	- 254,4 1	1,85
Φ ₁ 5	-2,64E- 05	-0,011	89,96	-0,37	Φ ₁ 5	-2,16E- 05	-0,022	76,95	-0,51
Φ ₁ 6	-3,22E- 05	-0,013	125,0 2	0,15	Ф1 6	-3,42E- 05	-0,026	139,6 1	0,12
Φ_l	-3,02E- 06	-0,001	15,63	0,025	Φ ₁ 7	-4,02E- 06	-0,002	12,19	0,021
Φ_l	-2,89E- 07	-9,08E- 05	1,53	0,0002	Φ_l	-4,02E- 07	-0,0002	1,3	0,001
Φ ₁ 9	-4,72E- 08	-1,46E- 05	0,25	3,42E- 06	Φ ₁ 9	-6,61E- 08	-3,79E- 05	0,21	4,1E- 06
$\overline{\Phi_2}$	-2,3 <u>5</u> E- 08	-7,27E- 06	0,12	3,0 <u>2E-</u> 07	$\overline{\Phi_2}$	-3,2 <u>9E</u> - 08	-1,88E- 05	0,10	3,67E- 07
Ia	-2,65	-430,4	$F_{\Sigma k}$	0,014	Ia	-3,19	-488,68	$F_{\Sigma k}$	-0,82
Ic	1,74	-95,943			I_c	2,69	-262,39		
I_b	0,91	0			I_b	0,5	0		

Рис.2. Зависимости электромагнитного усилия и скорости подвижного элемента от времени при пуске

Полученные результаты моделирования пуска линейного асинхронного двигателя совпадают с данными эксперимента приведенных в статье [1, с.56].

Литература

1. Сарапулов Ф.Н., Емельянов А.А., Иваницкий С.В., Резин М.Г. Исследование электромеханических переходных процессов линейного асинхронного короткозамкнутого двигателя // Электричество. – 1982. – №10. – С. 54–57.

2. Емельянов А.А., Богатов Е.А., Клишин А.В., Медведев А.В., Симонович В.Г. Математическая модель линейного асинхронного двигателя на основе магнитных схем замещения // Молодой ученый. – 2010. – №5. – С.14–22.

3. *Ануфриев И.Е. и др.* МАТLАВ 7 / Ануфриев И.Е., Смирнов А.Б., Смирнова Е.Н. – СПб.: БХВ-Петербург, 2005. – 1104 с.