алгоритмы решения задачи получения максимума момента при ограничениях не требуют вычисления производных от целевой функции, достаточно просты с точки зрения построения вычислительных процедур и могут быть реализованы в микропроцессорных системах экстремального управления частотнорегулируемыми асинхронными приводами.

С помощью разработанных алгоритмов произведен анализ зависимости границ зон от ограничений на ток и напряжение преобразователя, в ходе которого выявлено, что наличие всех трех зон регулирования не является основным режимом.

Проведена оценка эффективности экстремального закона управления по максимуму момента по отношению к известным законам. В сравнении с законом управления по минимуму тока эффективность при допустимом токе статора в два номинала и напряжении в номинал составила 23%.

Обоснована целесообразность применения этого закона управления в зависимости от уровня ограничений по току и напряжению.

Показано, что наибольший эффект от применения закона экстремального управления по максимуму момента получается при больших допустимых уровнях тока и низких ограничениях по напряжению.

Выявленные законы управления, методы расчета и полученные зависимости эффективности от ограничений создают все предпосылки для синтеза структуры системы автоматического регулирования с законом экстремального управления по максимуму момента.

М. М. Шевелев

ОБЩИЕ ПОЛОЖЕНИЯ ПО РАСЧЕТУ МОЩНОСТИ ДВИГАТЕЛЯ

Задача определения номинальной мощности двигателя имеет первостепенное значение при проектировании электроприводов производственных механизмов, так как при правильно выбранной мощности оказывается возможным выполнить технологические требования и обеспечить наиболее полное использование электрической машины при ее приемлемом тепловом состоянии.

При исследовании вопроса расчета мощности электродвигателя (ЭД) для глубинно-насосных станков-качалок возникает ряд трудностей: пульсирующий характер нагрузки и зависимость графика нагрузки от ряда определенных фак-

торов. Этими факторами являются диаметр насоса, число качаний в минуту, высота подъема жидкости, коэффициент подачи насоса, приведенный момент инерции системы, упругие деформации насосных труб и штанг, степень уравновешенности станка-качалки.

Для определения необходимой мощности и максимального момента ЭД при переменной нагрузке необходимо иметь нагрузочную диаграмму электропривода. На основании нагрузочной диаграммы с помощью метода эквивалентного тока, момента или мощности рассчитывается эффективная мощность двигателя. Максимальный в работе момент двигателя определяют непосредственно из нагрузочной диаграммы.

Для построения нагрузочной диаграммы и рассмотрения протекания пускового процесса необходимо решить уравнение движения электропривода. При ручном расчете это связано с большими затратами времени, а полученные решения мало удобны для практического применения. Поэтому для расчетов используются различные упрощенные методы. Однако с помощью современных вычислительных средств эта проблема становится разрешимой.