Студент

Чернова Римма Кузьминична

Профессор кафедры аналитической химии и химической экологии Саратовский государственный университет имени Н. Г. Чернышевского г. Саратов

Варыгина Ольга Владимировна

Соискатель кафедры аналитической химии и химической экологии Саратовский государственный университет имени Н. Г. Чернышевского г. Саратов

РЕНТГЕНОФЛУОРЕСЦЕНТНОЕ ОПРЕДЕЛЕНИЕ СОДЕРЖАНИЯ СВИНЦА В ПОЧВАХ

Аннотация: В работе рассмотрено применение «пользовательского фактора» для корректировки матричных эффектов при рентгенофлуоресцентном определении свинца, железа, калия. Правильность результатов РФА после применения «пользовательского фактора», оценена сравнением с результатами анализа других независимых методов по F- и t- критериям. Показано отсутствие систематической погрешности.

Ключевые слова: рентгенофлуоресцентный анализ, свинец, почва, «пользовательский фактора», автотрасса.

Свинец и его соединения относятся к 1 классу опасности. Это типичный яд, приоритетный токсикант-загрязнитель. При сильном отравлении вызывает боли в области живота – «свинцовые колики», параличи, боли в суставах, судороги. Отравление свинцом приводит к токсическому гепатиту, диспепсии. Свинец накапливается почках. Отмечена костях, печени, тесная взаимозаменяемость кальция и свинца в живых организмах. Природные запасы свинца ≈100 млн тонн. Из этого естественного источника в окружающую среду ежегодно поступают: 210 тыс. тонн силикатной пыли, вулканических газов, морских аэрозолей, метеоритной пыли. Вода рек содержит 0,2-8,7 мкг/л свинца. Ежегодные техногенные выбросы составляют 400000 т/год. Типичными

объектами для РФА являются почва – 48% общего числа объектов, различные воды – 24%, горные породы (руды) – 16%, биоматериал – 4%. В городах имеет место загрязнение почв соединениями свинца особенно вдоль дорог. Цель настоящей работы: отобрать пробы вдоль транспортных линий в четырех районах г. Саратова и проанализировать их на содержание свинца, применить корректировки «пользовательский фактор» ДЛЯ результатов анализа; разработать способ нахождения и применения «пользовательского фактора» на примере рентгенофлуоресцентного определения свинца, калия и железа. Проведена оценка правильности полученных результатов рентгенофлуоресцентного определения элементов с учетом «пользовательских факторов» путем сравнения с результатами пламенной фотометрии и спектроскопии с индуктивно связанной плазмой.

Измерения проводились с помощью портативного рентгенофлуориметра РФА XRFx-5000, с кремниевым дрейф-детектором (SDD), энергетическое разрешение 1401-50 эВ, отношение сигнал/фон 6500:1, рентгеновская трубка ≈ 10 Вт/50 кэВ, анализатор использует алгоритм расчёта по 25 элементам на основе принципа фундаментальных параметров, в режиме «ПОЧВА» диапазон пределов обнаружения металлов составляет от единиц ppm до 10.000 ppm (табл.1)

Таблица 1. Места отбора проб. Результаты определения свинца в почвах методом РФА (n=4, P=0.095)

$N_{\underline{0}}$	Район г. Саратова	Место отбора пробы	Ccp±ΔC,	Sr,%
			$M\Gamma/K\Gamma$	
1	Октябрьский	Ул. Рабочая/ул. Радищева	43±5 / 43±10*	12,4 / 23,1
2	Октябрьский	Ул. Рабочая/ул. М. Горького	32±6 / 42±10*	15,8 / 15,2
3	Заводской	Новоостраханское шоссе/ул.	42±7 / 45±14*	10,5 / 12,7
		Маркина		
4	Заводской	Новоостраханское	46±7 / 45±10*	11,5 / 21,6
		шоссе/ул.Крымская		
5	Ленинский	Трофимовский мост	106±16/155±29*	14,7 / 17,6
6	Ленинский	Проспект 50 лет	44±16 / 52±9*	23,1 / 13,4
		Октября/Международная ул.		
7	Заводской	Ул. Чернышевская/ул. Верхняя	53±6 / 54±15*	9,4 / 18,3
8	Октябрьский	Ул. Чернышевская/ул. Новоузенская	48±12 / 42±2*	14,6 / 6,7
9	Кировский	Ул. Танкистов/ул. Магнитная	75±3 / 67±6*	8,9 / 19,3
10	Кировский	Ул. Танкистов/ул. Соколовая	79±3 / 33±2*	7,1 / 11,3

^{• -} отбор пробы произведён с глубины почвенного покрова 5 см

Пробоотбор почв проводился методом «конверта», точечные пробы отбирали с пробных площадок 1 м² с гумусного горизонта и глубины около 5 см. Из каждой точки отбирали около 0,2 кг почвы. Образцы почв высушивались до воздушно—сухого состояния, затем измельчались, вводились добавки и проводилось определение. Метод добавок применен для нахождения «пользовательского фактора». Искомую концентрацию элемента в пробе после введения добавки определяли по формуле:

$$Cx = \frac{(\Delta c \cdot Ix/Ix')}{1 - (Ix/Ix')m}$$

 Δc -величина добавки, Ix-интенсивность флуоресценции пробы без добавки, Ix - интенсивность флуоресценции пробы с добавкой, m -масса пробы с добавкой, формула для расчета необходимой навески добавки (Γ):

 m_{conu} - масса добавки соли, m_{\Im} -масса элемента в добавке, W_{\Im} -массовая доля элемента в добавке, $W_{och, g-ga}$ - массовая доля основного вещества.

Ниже приведена диаграмма содержания свинца в образцах почв ряда придорожных участков г. Саратова (ПДК Рb в почве - 32 мг/кг)

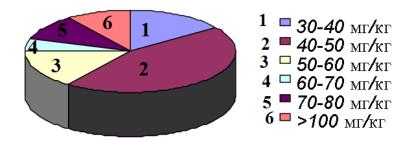


Таблица 2. Сравнительная характеристика содержания калия (ppm) в образцах почвы, полученная методами рентгено-флуоресцентного анализа и пламенной фотометрии.

№	Содержание калия РФА, ppm			Сравнение результатов по F и t критериям	
пробы			Fрасч	tрасч	
1.	9662	9000			
2.	11480	11320			
3.	13380	14000			
4.	14560	17000	1,36	0,60	
5.	17600	19500			
6.	19780	21500			
7.	21220	23660			

Результаты двух серий (методов) не имеют систематической погрешности.

 $F_{\text{табл. f1=6, f2=6, a=0,05}}=4,30$

Таблица 3. Оценка степени химического загрязнения почвы соединениями свинца (Приложение 1к СанПиН 2.1.7.1287-03)

Категория	Содержание в почве (мг/кг)		Количество проб по г. Саратову с
загрязнения	I класс опасности		данной категорией загрязнения, %
	Органические	Неорганические	
	соединения	соединения	
Чистая	от фона до ПДК	от фона до ПДК	-
Допустимая	от 1 до 2 ПДК	от 2-х фоновых значений до ПДК	80 % проб
Опасная	от 2 до 5 ПДК	от ПДК до Ктах	20 % проб
Чрезвычайно опасная	> 5 ПДК	> Kmax	-

Ктах — максимальное значение допустимого уровня содержания элемента по одному из четырёх показателей

Выводы:

- 1. Произведен отбор 150 проб почв в поверхностных горизонтах вдоль 5 автомобильных трасс 4-х районах г. Саратова (Октябрьский, Заводской, Ленинский, Кировский).
- 2. Методом рентгенофлуоресцентного анализа определено содержание свинца в отобранных пробах почв. Во всех случаях отмечено превышение ПДК по содержанию свинца в почвах (от 1,5 до 4,5 раз).
- 3. Из всех проанализированных проб \approx 80% по уровню загрязнения относится к категории ДОПУСТИМЫЕ, \approx 20% относится к категории ОПАСНЫЕ (район Трофимовского моста, пересечения ул. Танкистов с ул. Соколовой и ул. Магнитной).

Список литературы:

- 1. Тяжелые металлы в системе почва-растение-удобрение [Текст] / ред. М. М. Овчаренко. Москва : Пролетарский светоч, 1997. 291 с.
- 2. Сердюкова, А. В. Свинец в почвах и растениях техногенного ландшафта [Текст] / А. В. Сердюкова, Н. Г. Зырин // Научные труды. Химия микроэлементы в почвах и современные методы их изучения / Почвен. ин-т им. В. В. Докучаева. Москва, 1985. С. 16–20.

- 3. Алексеев, Ю. В. Тяжелые металлы в почвах и растениях [Текст] / Ю. В. Алексеев. Ленинград : Агропромиздат, 1987. 158 с.
- 4. Афонин, В. П. Рентгенофлуоресцентный силикатный анализ [Текст] / В. П. Афонин, Т. Н. Гуничева, Л. Ф. Пискунова. Новосибирск : Наука, 1984. 226 с.
- 5. Pевенко, А. Г. Proc. 1-st Intern [Текст] / А. Г. Pевенко // International School on Contemporary Physics. Applied Nuclear Physics (Ulaanbaatar, Mongolia. 2000) = Международная школа по современной физике. Прикладная ядерная физика. Ulaanbaatar : University Press, 2002. Р. 5–54.
- 6. Ширкин, Л. А. Рентгенофлуоресцентный анализ объектов окружающей среды [Текст] / Л. А. Ширкин. Владимир : Издательство Владимирского государственного университета, 2009. 60 с.