$$P = \frac{2 \cdot 19}{12} = 3.17$$

Структурная формула «Основная задача синтеза зубчатых зацеплений» имеет наименьшую среднюю степень доступности по сравнению со структурной формулой «Образование простейшего зубчатого механизма» и соответственно наибольшую доступность в понимании излагаемого учебного материала.

Помимо теоретического сравнения двух различных логических структур представления учебного материала, в рамках данной работы проведено практическое исследование в параллельных академических группах студентов. Результаты тестирования подтвердили, что доступность учебного материала по структурно-логической схеме «Основная задача синтеза зубчатых зацеплений» выше по сравнению с структурно-логической формулой «Образование простейшего зубчатого механизма».

Таким образом, разработанная методика позволяет логически структурировать излагаемый учебный материал и осуществлять сравнительный анализ доступности структурно-логических схем с использованием теории графов с целью оптимизации учебного процесса.

Список литературы

- 1. *Немов*, *P. С.* Виды памяти и их особенности / Немов Р. С. Текст: электронный // Психология: сайт. URL: https://psixologiya.org/obshhaya/pp/1605-vidy-pamyati-i-ix-osobennostinemov-r-s.html.
- 2. *Сохор, А. М.* Логическая структура учебного материала. Вопросы дидактического анализа / А. М. Сохор; под ред. М. А. Данилова. Москва: Педагогика, 1974. 192 с. Текст: непосредственный.

УДК 373.5:[371.38:371.279.6:53]

A. A. Кислицын A. A. Kislitsyn

ФГАОУ ВО «Тюменский государственный университет», Тюмень
Туитеп state university, Tyumen
akislicyn@utmn.ru

НЕКОТОРЫЕ ТИПИЧНЫЕ ОШИБКИ ПРИ РЕШЕНИИ ЗАДАЧ НА РЕГИОНАЛЬНОМ ЭТАПЕ ВСЕРОССИЙСКОЙ ОЛИМПИАДЫ ШКОЛЬНИКОВ ПО ФИЗИКЕ

SOME TYPICAL MISTAKES IN SOLUTIONS OF TASKS AT THE REGION STAGE OF THE ALL-RUSSIAN PHYSICS CONTEST FOR SCHOOL STUDENTS

Аннотация. Представлен краткий обзор ошибок, сделанных школьниками при решении задач регионального этапа олимпиады по физике в Тюменской области.

Abstract. Is presented the brief review of mistakes in solutions of physical tasks, those was making school students on the Tyumen region stage of the All-Russian contest.

Ключевые слова: олимпиада школьников, физика, задачи, характерные ошибки.

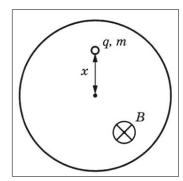
Keywords: Contest for school students, physics, tasks, typical mistakes.

Предметные олимпиады школьников играют значительную роль в современном образовании, выполняя ряд функций, важнейшая из которых – профессиональная – заключается в расширении и углублении предметных знаний как у школьников, так и у педагогов [3]. При этом важную роль играет не только подготовка к олимпиаде, но и анализ ее результатов.

В конце января 2021 г. в Тюмени прошел региональный этап Всероссийской олимпиады школьников, который состоял из 2-х туров. В каждом туре было по 4 задачи (3 теоретических и 1 «квазиэкспериментальная»). Итоги этого этапа опубликованы на сайте ГАОУ ТО ДПО «ТОГИРРО» в разделе «Всероссийская олимпиада

школьников». Решения задач опубликованы на портале http://abitu.net/vseros. Автор данной статьи был председателем жюри по физике, и считает полезным обсудить типичные ошибки, сделанные школьниками при решении некоторых задач, оказавшихся наиболее трудными для участников олимпиады.

Задача 2.9.2. (Первое число – номер тура, второе – номер класса, третье – номер задания). Тонкостенный сосуд (в форме уголка) без дна, изображенный на рисунке, установлен на гладкой горизонтальной поверхности. В него через небольшое отверстие в правой верхней грани наливают воду. Когда 5/6 объема сосуда оказывается заполненным, вода начинает вытекать из-под него. Определите массу сосуда, если известно, что a = 10 см, а плотность воды 10^3 кг/м³.

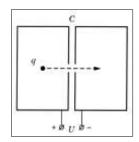

Решить эту задачу пытались почти все девятиклассники. Многие из них правильно определили силу давления на левую верхнюю грань, а затем все допустили одну и ту же ошибку: решали задачу так, как будто сосуд симметричен, и вода начнет вытекать, когда ее сила давления на верхнюю грань сравняется с силой тяжести всего сосуда. В этом случае решение получается очень легко, но оно ошибочно. Надо внимательнее представить себе, как будет проходить процесс, и тогда можно догадаться, что для вытекания воды не надо поднимать весь сосуд, достаточно приподнять его левую часть. Во-первых, она более легкая, а, во-вторых, сила давления, поднимающая сосуд, действует как раз на левую верхнюю грань. Поэтому на сосуд будет действовать пара сил, и когда моменты этих сил относительно правого нижнего ребра сравняются, левое ребро начнет приподниматься, и вода начнет вытекать. Остается аккуратно расписать эти моменты, и получить правильный ответ.

Вообще, когда решение олимпиадной задачи получается легко, это подозрительно. Надо еще раз внимательно прочитать условие и постараться вникнуть в задачу. Вот еще один пример.

Задача 1.11.1. Лодка переплывает реку по прямой, перпендикулярной берегам. Ее скорость относительно воды равна \mathbf{v}_0 . До середины реки скорость течения изменяется по закону u = ax от нуля до $\mathbf{v}_0/2$ — скорости воды на середине реки, где a - uз-вестный коэффициент, x — расстояние от берега. После середины реки скорость уменьшается до нуля у другого берега по тому же закону. Определите зависимость от времени угла между вектором скорости лодки относительно воды и направлением движения относительно берега. Через какое время лодка окажется на другом берегу?

Более половины школьников, решавших эту задачу, посчитали, что вектор скорости \mathbf{v}_0 направлен перпендикулярно к берегу; и очень легко получили неправильный результат: зависимость угла от времени определяется в пару строк, а время движения вообще моментально. Если бы эта легкость насторожила и заставила прочесть условие внимательнее, то стало бы понятно, что перпендикулярно к берегу направлен вектор результирующей скорости, и решение оказывается существенно сложнее.

Задача 1.11.3. В вакууме в невесомости между круглыми полюсами электромагнита на расстоянии x от оси магнита покоится частица массы m и заряда q. Сначала магнитное поле равно нулю. Затем, за малый промежуток времени, индукция магнитного поля увеличивается до значения B_0 и поддерживается постоянной g течение времени g0 и поддерживается очень быстро уменьшается до нуля. Магнитное поле g1 пределах полюсов считать однородным, перемещением частицы за время включения и выключения поля пренебречь. Задание: объяснить, почему частица при-



ходит в движение, описать ее траекторию сначала качественно, а затем ответить еще на 4 вопроса о скорости и траектории частицы.

Эту задачу никто полностью не решил, почти все споткнулись уже на 1-м вопросе. В ответе на него только один школьник указал на возникновение вихревого

электрического поля. Остальные указывали на силу Лоренца, но в формуле писали только магнитную часть этой силы, не обращая внимания на то, что по условию задачи начальная скорость частицы равна нулю. В жюри это вызвало большое недоумение, т.к. тема «электромагнитная индукция» при подготовке к олимпиаде всегда считалась одной из приоритетных.

Задача 2.11.1. Две одинаковые проводящие оболочки в форме цилиндров с малыми отверстиями на общей оси образуют конденсатор ёмкостью С. В центре левой оболочки удерживают шарик с зарядом q. Суммарный заряд всей системы, включая заряд шарика, равен нулю. Конденсатор заряжают, подключив к источнику с напряжением U, затем отключают от источника и отпускают шарик. Шарик начинает двигаться вдоль оси и, пролетев через отверстия, попадает внутрь правой оболочки Какую кинетическую

энергию будет иметь шарик в центре правой оболочки? При каком заряде шарика эта энергия максимальна и чему она равна? Выделением тепла из-за тока в оболочках пренебречь, поле тяжести не учитывать.

Более половины из школьников, пытавшихся решить эту задачу, на схеме изобразили рядом два «бочонка» с малыми отверстиями на цилиндрических поверхностях, т.е. даже не поняли условия задачи, хотя, во-первых, четко указано, что цилиндры находятся на общей оси, и, во-вторых, что они образуют конденсатор. Только 13 участников, судя по схеме, поняли условие. Но 10 из них смогли лишь правильно написать элементарное соотношение между зарядом, емкостью конденсатора и разностью потенциалов на его обкладках. Трое, кроме того, указали, что после отключения источника разность потенциалов между оболочками зависит только от зарядов на их внешних поверхностях, а двое отметили еще, что перемещение заряда после отключения источника должно привести к изменению разности потенциалов. Ни в одной работе нет никаких указаний на экранирующие заряды на внутренней поверхности оболочек, и на их взаимодействие с заряженным шариком. Таким образом, можно отметить еще один пробел при подготовке к олимпиаде: тему «конденсаторы».

Задача 2.11.3. В кубе из вещества с показателем преломления n=2 точечный источник испустил кратковременную вспышку, свет от которой расходится однородно во всех направлениях. Свет веществом куба не поглощается. Какие значения может принимать доля η энергии вспышки, вышедшей наружу, в зависимости от положения источника внутри куба? Укажите, при каких положениях источника эта доля минимальна, при каких максимальна и чему она равна? При падении света на границу раздела часть его энергии, зависящая от угла падения, отражается, а часть проходит через границу раздела.

Задачу полностью не решил никто. Одна из характерных ошибок связана с тем, что многие школьники представляют полное отражение как скачкообразное исчезновение света, проходящего через границу раздела при предельном угле падения. Предельный угол полного отражения, равный 30° , нашли 7 школьников. Из них только двое правильно определили, что из куба выходит свет, распространяющийся внутри 6-ти конусов с углами при вершине 60° , и только один участник показал, что свет, частично отраженный от одной из граней куба, в дальнейшем полностью отражается от перпендикулярных ей граней.

«Квазиэкспериментальные» задачи.

Физика в своей основе — экспериментальная наука. Поэтому очень важным является формирование культуры учащихся в области эксперимента. Экспериментальные задачи включаются в олимпиадные задания уже более 30 лет, однако реально организовать полноценный экспериментальный тур для сотни участников олимпиады — сложная задача. Но организаторы олимпиад еще несколько лет назад нашли хороший выход:

включать задания, моделирующие обработку результатов эксперимента; такие задания называются «псевдо-» или «квази-» экспериментальными [3].

Двадцать лет назад авторы книги [1] отмечали, что с экспериментальными задачами школьники справляются значительно хуже, чем с теоретическими, и экспериментальная подготовка наших школьников нуждается в существенном усилении. Определенные усилия, предпринятые в этом направлении, дали положительные результаты. По итогам прошедшего регионального этапа можно отметить, что с квазиэкспериментальными задачами участники в среднем справились лучше, чем с теоретическими. При этом, однако, необходимо указать на ошибку, которая по-прежнему остается типичной для школьников, из-за которой многие участники не могут получить максимальный балл: стремление при построении графика провести линию через каждую экспериментальную точку, из-за чего получается либо ломаная, либо корявая кривая линия. Это приводит к большой погрешности при определении тангенса угла наклона, и, соответственно, к большой погрешности результата. Надо еще раз напомнить, что желательно произвести линеаризацию результатов измерений, и что эти результаты следует изображать не точками, а крестиками или прямоугольниками, размеры которых соответствуют погрешности эксперимента. Вид графика надо определить теоретически, а его линию провести по методу наименьших квадратов хотя бы «на глазок», чтобы отклонения экспериментальных крестиков в ту и другую сторону были приблизительно равноценны; линия вовсе не обязательно должна пройти через центр каждого крестика; хорошо, если она хотя бы заденет его край.

Список литературы

- 1. *Всероссийские* олимпиады по физике. 1992—2001 / науч. ред. С. М. Козел, В. П. Слободянин. Москва: Вербум-М, 2002. 392 с. Текст: непосредственный.
- 2. Козлова, Т. Л. Роль олимпиадного движения в формировании ключевых компетенций педагогов / Т. Л. Козлова, Д. А. Чернышев. Текст: непосредственный // Инновации в профессиональном и профессионально-педагогическом образовании: материалы 23-й Международной научно-практической конференции, Екатеринбург, 24—25 апреля 2018 г. / Рос. гос. проф.-пед. ун-т. Екатеринбург, 2018. С. 555—558.
- 3. *Красин, М. С.* Квазиэкспериментальные задачи на муниципальном этапе Всероссийской олимпиады школьников по физике и их роль в развитии методологической культуры учащихся в области физического эксперимента / М. С. Красин. Текст: непосредственный // Физико-математическое и технологическое образование: проблемы и перспективы развития: материалы IV международной научно-методической конференции, Москва, 12–14 марта 2018 г. / Моск. пед. гос. ун-т. Москва, 2019. С. 167–174.

УДК 377.354

C. B. Климан S. V. Kliman

AO «НПК «Уралвагонзавод», Нижний Тагил JSC «NPK «Uralvagonzavod», Nizhny Tagil kliman.swetlana@yandex.ru

КОРПОРАТИВНОЕ ОБУЧЕНИЕ: ОТ ИДЕИ ДО РЕАЛИЗАЦИИ CORPORATE TRAINING: FROM IDEA TO IMPLEMENTATION

Аннотация. В статье рассматривается многоуровневая концепция обучения и развития персонала АО «Научно-производственная корпорация «Уралвагонзавод» и внедрение системы независимой оценки квалификации на предприятии.

Abstract. The article considers a comprehensive model of the training and development system for employees of JSC "Uralvagonzavod Research and Production Corporation "and the introduction of an independent qualification assessment system at the enterprise.

Ключевые слова: корпоративное обучение, независимая оценка квалификации, центр оценки квалификаций.