АЛГОРИТМ ОБРАБОТКИ РАДИОЛОКАЦИОННЫХ СИГНАЛОВ, ПОЛУЧАЕМЫХ ПРИ ИЗМЕРЕНИИ ПАРАМЕТРОВ ДВИЖЕНИЯ НЕРАЗ-ДЕЛЯЮЩИХСЯ СНАРЯДОВ НА НАЧАЛЬНОМ ЭТАПЕ ВЫСТРЕЛА

С.В. Поршнев

Нижнетагильский государственный педагогический институт, ул. Красногвардейская, 57, Нижний Тагил-622031, Россия, тел. (3435) 253-644, e-mail: ntr20@ntgpi.e-burg.ru

Аннотация - Описан алгоритм обработки радиолокационных сигналов, получаемых при измерении параметров двюжения снарядов с неразделяющимися частями (осколочно-футасные и кумулятивные снаряды) на начальном этапе выстрела радиолокаторами непрерывного излучения СВЧ диапазона.

I. Введение

В практике полигонных испытаний для измерения параметров движения снаряда (ПДС) на начальном этапе выстрела применяют радиолокаторы непрерывного излучения СВЧ-диапазона (частота излучаемой электромагнитной 10,5 ГГц) [1]. (Здесь под начальным этапом выстрела мы понимаем движение снаряда в стволе и на первых 30-70 м внешнебаллистической траектории). Частота радиолокационного сигнала (далее РС), регистрируемого с выхода высокочастотного блока радиолокатора, в соответствие с эффектом Доплера, пропорциональна скорости движения снаряда. Так как скорость движения снаряда с неразделяющимися частями на этапе движения снаряда в стволе меняется от 0 м/с до 800-960 м/с (длительность этапа ≈10 мс), а после выхода из ствола монотонно уменьшается, РС является ЧМ сигналом со сложным законом изменения частоты. Отметим, что рассматриваемый нами РС и задача оценки его параметров, является не типичной для «классической» радиолокации. Так как требуется оценка параметров сигнала, частота которого меняется во время выстрела по нелинейному закону в широком частотном диапазоне. по одной его реализации. Указанные обстоятельства ставят под сомнение применимость в данной задаче известных статистических алгоритмов обработки сигналов и определяют необходимость разработки новых алгоритмов обработки РС, не использующих статистические методы.

II. Частотно-временные характеристики радиолокационных сигналов.

В соответствии с физическими особенностями движения снаряда во время выстрела закон изменения частоты сигнала может быть разделен на три последовательных интервала. Первый интервал - от начала движения снаряда в стволе до момента выхода из канала ствола. Второй интервал - от момента выхода снаряда из канала ствола до момента достижения снарядом максимальной скорости. Третий интервал - от момента достижения снарядом максимальной скорости до момента прохождения снаряда отражающего щита, расположенного на расстоянии ≈50÷70 м от дульного среза. Построенная модель РС, получаемого на внутрибаллистическом этапе выстрела [2], и результаты экспериментального исследования особенностей движения снаряда на начальном этапе выстрела [3] позволили получить оценку частотно-временных характеристик РС на указанных временных интервалах. Типичный РС, получаемый при измерении параметров движения снаряда классической схемы выстрела (осколочнофугасный, кумулятивный) имеет следующие частотно-временные характеристики: на первом временном интервале [0;8,43] мс частота сигнала меняется в диапазоне [0;48,0] КГц по монотонно возрастающему закону; на втором временном интервале [8,3;9,37] мс – частота сигнала меняется по монотонно возрастающему закону в диапазоне [48,0;48,9] КГц; на третьем временном интервале [9,37;103,9] мс частота сигнала меняется в диапазоне [48,0;47,9] КГц по монотонно убывающему закону.

Анализ шумов, присутствующих в реальных РС, показал, что на внутрибаллистическом этапе выстрела при отсутствии прорыва пороховых газов в предснарядное пространство в сигнале присутствует аддитивный шум, мощность которого обеспечивает отношение сигнал/шум по амплитуде ≈10-15 дб. После выхода снаряда из канала ствола из-за взаимодействия зондирующей ЭВ и облака дульного выхлопа, являющегося низкотемпературной плазмой. возникают амплитудные и фазовые искажения РС. При этом отношение сигнал/шум варьируется в широком диалазоне 0,5÷5,0 дб на различных системах и для различных типов снарядов. Затем, по мере изменения физических характеристик газов, образующих облако дульного выхлопа, (уменьшения плотности электронов и частоты столкновений вследствие остывания газов и уменьшения их плотности) искажения РС относительно невелики (отношение сигнал/шум по амплитуде ≈7,0÷15,0 дб).

III. Алгоритм обработки

Анализ известных алгоритмов обработки сигналов, получаемых при измерении ПДС в стволе (метод временных интервалов [3], алгоритм, основанный на понятии «мгновенная частота аналитического сигнала» [4]), показывает, что из-за наличия значительный искажений РС в момент выхода снаряда из канала ствола они не обеспечивают требуемой точности измерений (0,5% по скорости). В этих условиях наиболее приемлемым, как самый устойчивый к шумам, оказывается алгоритм, основанный на свойстве мгновенного спектра РС [5]. Поэтому данный алгоритма был положен в основу алгоритма обработки РС, получаемых в задаче измерения ПДС на начальном этапе выстрела, реализуемого спедующей поспедовательностью действий:

1. По зарегистрированному PC u=u(t) находят N сигналов u_i(t), где

$$\mathbf{u}_{i}(\mathbf{t}) = \mathbf{u}(\mathbf{t}) \cdot \left(\operatorname{rect}\left(\mathbf{t} - \mathbf{t}_{0i+1}\right) - \operatorname{rect}\left(\mathbf{t} - \mathbf{t}_{0i}\right) \right)$$
$$\mathbf{t}_{0i} = \Delta \mathbf{T} \cdot i, i = 0, \dots N, \Delta \mathbf{T} = \frac{\mathbf{T}_{1}}{\mathbf{N}},$$

Т₁ - время нахождения снаряда в стволе

2. Для каждой функции u,(t) находят спектр S,(ω).

370

Proceedings of 9th International Gutmean Microwave Conference GutMUG'99. 13-16 September 1999, Sevastopol, Crimea, Ukraine © 1999: CriMiCo'99 Organizing Committee; Weber Co. ISBN: 966-572-003-1. IEEE Catalog Number: 99EX363 3. Для каждого спектра $S_i(\omega)$ в полосе частот $\omega>0$ определяют частоту ω_{max} , соответствующую его максимальному значению.

 По массиву частот ω_{max}, определяют массив скоростей v_i (λ – частота электромагнитной волны радиолокатора)

$$V_i = \frac{\omega \cdot \lambda}{4 \cdot \pi}$$

5. Используя сплайн-интерполяцию, уточняют зависимость v(t) на начальном участке внутрибаллистического этапа выстрела.

 Получают зависимость v(t) линейной интерполяцией массива скоростей v.

7. Сглаживают зависимость v(t) методом скользящей медианы.

8. Последующим интегрированием и дифференцированием массива v(t) определяют перемещение и ускорение снаряда.

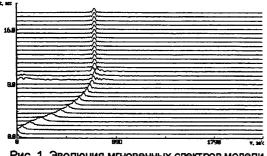


Рис. 1. Эволюция мгновенных спектров модели РС, получаемого в задаче измерения ПДС классической схемы выстрела.

Для представления результатов обработки РС используется представление эволюции мгновенных спектров РС в плоскости время—скорость (рис. 1) и графическое представление функций x=x(t), v=v(t).

IV. Заключение

Оценка точности данного алгоритма обработки показала, что погрешность в определении перемещения составляет 1,5% (в диапазоне скоростей 0÷30 м/с), 0,1% (30÷50 м/с), 0,05% (50÷150 м/с), 0,01% (150÷720 м/с), 0,02 (720÷700 м/с); скорости – 2,5% (0÷30 м/с), 1,2% (30÷50 м/с), 0,35% (50÷150 м/с), 0,1% (150÷720 м/с), 0,12% (720÷700 м/с).

V. Список литературы

- [1] Коезель А.В., Поршнев С.В., Шакиров М.Р. Радиолокационный способ измерения параметров движения снаряда на начальном этапе выстрела. Боеприпасы. 1996. № 5-6.
- [2] Поршнев С.В. Моделирование радиоинтерферометрического сигнала в задачах измерения параметров поступательного движения снаряда в стволе во время выстрела. Боеприпасы. 1996. № 5-6.
- [3] Квасов В.Е. Определение параметров движения снаряда в канале ствола в процессе выстрела методом микроволновой интерферометрии. Дис...канд. техн. наук. –Нижний Тагил, 1986.
- [4] Бужинский О.А., Поршнев С.В. Применение преобразования Гильберта для обработки радиоинтерферометрических сигналов. Боеприпасы. –1992. –№ 8.
- [5] Поршнев С.В. Частотно-временные характеристики радиолокационных сигналов, получаемых в задачах измерения параметров движения снаряда в стволе во время выстрела. Вопросы оборонной техники. В печати.

ALGORITHM FOR PROCESSING OF RADAR SIGNALS WHEN MEASURING UNDIVIDING PROJECTILE MOVEMENT PARAMETERS ON THE INITIAL STAGE OF A SHOT

Porshnev S.V.

Nizhny Tagil Teachers' Trainining Institute, 57 Krasnogvardeyskaya str., Nizhny Tagil-622031, Russia, E-mail: ntr20@ntgpi.e-burg.ru

Abstract - The algorithm for processing of radar's signals obtained when measuring undividing projectiles (demolition and cumulative projectiles) movement parameters on the initial stage of a shot is described.

I. Introduction

When measuring projectiles movement parameters on the initial stage of a shot one uses microwave CW radar's of a continuous radiation (frequency emitted electromagnetic 10,5 GHz) [1]. (Here we understand the initial stage of a shot driving a projectile in a trunk and on first 30-70 m of an exterior ballistic trajectory). The frequency of a radar signal (further RS) that was registered from a radar high-frequency block exit, in the correspondence with Doppler effect, is proportional to a projectile velocity. As the undividing projectile movement velocity in a trunk varies from 0 m/s up to 800-960 m/s (duration of a stage ≈10 ms), and after an exit from a trunk monotonically decreases, RS is a FM signal with the complicated law of frequency modification. Let's mark, that considered by us RS and the task of an evaluation of its parameters is not typical for "classical" radar-locations. As the evaluation of parameters of a signal whose frequency varies during a shot under the nonlinear law in a wide frequency range, is required.

II. Frequency-temporal performances of radar signals.

Typical RS obtained when measuring undividing projectile movement parameters has the following frequency-temporal performances: on the first time interval [0;8.43] ms the frequency of a signal varies in a range [0;48.0] kHz under the monotonically growing law; on the second time interval [8.3;9.37] ms – the frequency of a signal varies under the monotonically growing law in a range [48.0;48.9] kHz; on the third time interval [9.37;103.9] ms the frequency of a signal varies in a range [48.0;47.9] kHz under the monotonically decreasing law [2,3].

III. Processing algorithm

The analysis of the well known algorithms for processing of signals obtained when measuring projectile movement parameters in a trunk (a method of time intervals [3], algorithm based on "concept" instant frequency of an analytical signal " [4]), shows, that because of presence of significant distortions RS at the moment of an exit of a projectile from the channel of a trunk they do not ensure a required exactitude of measurements (0,5 % on a velocity). Because of this, most acceptable appears the algorithm based on property of an instant spectrum PC [5]: the instant spectrum calculated on an interval by duration ΔT ($\Delta T < T$, T - duration of a signal) has a maximum on frequency appropriate average velocity of driving on the given measuring interval.

IV. Conclusion

The evaluation of an exactitude of the given processing algorithm has shown, that the error in the definition of transition is 1.5 % (in a range of velocities 0÷30 m/s), 0.1 % (30÷50 m/s), 0.05 % (50÷150 m/s), 0.01 % (150÷720 m/s), 0.02 (720÷700 m/s); velocities - 2.5 % (0÷30 m/s), 1.2 % (30÷50 m/s), 0.35 % (50÷150 m/s), 0.1 % (150÷720 m/s), 0.12 % (720÷700 m/s).

Proceedings of 9th International *Out*mean *Microwave Conference OutMills* '99. 13-16 September 1999, Sevastopol, Crimea, Ukraine © 1999: CriMiCo'99 Organizing Committee; Weber Co. ISBN: 966-572-003-1. IEEE Catalog Number: 99EX363

371