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Abstract⎯The vacancy-flux-induced decomposition of an interphase boundary in substitutional alloys has
been considered. The interphase boundary decomposition has been described using the nonequilibrium ther-
modynamics approach, which considers a heterogeneous system to be continuous medium, including the
interphase boundary. A hypothesis of local equilibrium in the thermodynamics of a continuous medium has
been substituted for a more general hypothesis that takes into account the nonlocal dependence of thermo-
dynamic forces and fluxes on order parameters. The interpretation of the formation of spatial composition
modulations during the mechanical alloying of pure metallic Cu–Co, Cu–Fe, and Fe–Cr–Sn powder mix-
tures has been given.
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INTRODUCTION

Mechanical alloying of pure metallic Cu–Co,
Cu‒Fe, and Fe–Cr–Sn powder mixtures results in
composition heterogeneity with the period of spatial
concentration modulations of about 2 nm and an
amplitude of more than 10% [1–3]. The initial stage of
spinodal decomposition is characterized by the same
parameters of composition modulation.

The Mössbauer study of mechanically alloyed Fe,
Cr, and Sn powders indicated spatial composition
modulations of up to 10 at % with a period of several
nanometers [3]. This composition distribution was
observed after the 20-min medium-temperature
annealing of the compacted samples. Spinodal
decomposition was observed in Fe–Cr–Sn alloys after
the annealing of preliminary quenched samples.
Annealing for 30 h results in the formation of a modu-
lated structure with parameters typical of mechani-
cally alloyed samples. The study of the composition
distribution in a Fe–Cr–Sn sample immediately after
mechanical alloying and compaction (before anneal-
ing) suggests that this distribution is characteristic of
an equilibrium two-phase alloy. Medium-temperature
annealing, which activates the processes of composi-
tion redistribution, results in a transition to a state

identical to the initial (linear) stage of spinodal
decomposition.

The high positive mixing energy of Cu–Fe and
Cu–Co alloys does not allow the creation of chemi-
cally homogeneous samples using quenching for the
study of spinodal decomposition. A direct comparison
with the mechanical alloying processes is not possible.
The composition distribution of mechanically alloyed
Cu–Fe and Cu–Co samples seems to be similar to the
composition distributions of other systems during
their spinodal decomposition.

In work [1], after mechanical alloying, the mixture
of Cu–Co powders was compacted at a pressure of
0.5 GPa at room temperature. Then, medium-tem-
perature annealing was carried out for 2 h at a tem-
perature of 400°C. The composition distribution in
some local regions of the sample was found to have a
form that corresponds to the sharp concentration
modulations, which may indicate the linear stage of
spinodal decomposition. Fourier analysis showed that
the period of these modulations was 2 nm.

The mechanical alloying of the mixture of Cu–Fe
powders also results in the composition modulations
with parameters that correspond to the linear stage of
spinodal decomposition [2]. In contrast to Cu–Co,
the samples were not annealed and the powder mix-† Deceased.
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ture after mechanical alloying was compacted at room
temperature and at a pressure of 5 GPa.

Composition modulations are observed only in
some regions of the mechanically alloyed Cu–Co and
Cu–Fe samples. The composition in other regions is
constant. These regions with the homogeneous com-
position contain up to ~19 at % Cu (copper-depleted
regions) and up to ~14 at % Fe (iron-depleted regions).
These values differ significantly from the equilibrium
solubility limits 1–3 at % Cu and 1–3 at % Fe, respec-
tively. Thus, copper (iron)-enriched and depleted
regions in the sample can be considered to be regions
with homogeneous compositions, but are in a non-
equilibrium state. The width of the nonequilibrium
interphase boundary is ~2 nm [2], which is similar to
that of the equilibrium interphase boundary.

One sample contains regions with different quality
and quantity characteristics of the composition distri-
bution, which, in our opinion, is associated with the
difference in factors that determine the conditions for
generating vacancies during severe plastic deforma-
tion. The process of severe plastic deformation is
related to polycrystal structure evolution. This process
depends in a complicated way on the distribution and
the activity of vacancy sources and sinks; therefore,
the same sample contains both regions whose compo-
sition is close to equilibrium phases and regions with
modulated structures [2].

There are several stages of spinodal decomposition.
At the initial (linear) stage, a modulated structure is
spontaneously formed from a homogeneous metasta-
ble alloy. Next stages are diffusion-induced growth
and structure coarsening. The process is completed by
the formation of equilibrium phases separated by
interphase boundaries. The linear stage of decomposi-
tion proceeds rapidly because it is controlled by pow-
erful thermodynamic stimuli. Subsequent stages are
controlled by diffusion, so they occur slowly. The nec-
essary condition for the onset of composition redistri-
bution during mechanical alloying is the compaction
of the powder mixture of pure metals preliminarily
subjected to mechanical treatment. As a result, a non-
equilibrium alloy is formed in which the composition
distribution is the same as that in an equilibrium alloy
based on mutually insoluble components. Its non-
equilibrium state manifests during subsequent anneal-
ing at medium temperatures close to room tempera-
ture. This leads to the redistribution of the composi-
tion and the formation of spatial modulations with
parameters that are characteristic of the linear stage of
spinodal decomposition. Annealing at higher tem-
peratures leads to diffusion-induced growth and struc-
ture coarsening, as occurs in the case of classical
spinodal decomposition. The result of the redistribu-
tion of the composition during mechanical alloying is
a transition from a state with parameters characteristic
of an equilibrium two-phase alloy to a nonequilibrium
state in the form of composition modulations. Anneal-

ing temperatures of 273–400°C correspond to the
conditions under which vacancy migration becomes
possible [4]. The composition redistribution is associ-
ated with the inverse Kirkendall effect.

Redistribution effects do not always occur directly
during mechanical treatment; however, in some cases,
they are delayed. This is because the formation of the
sources of nonequilibrium vacancies during mechani-
cal treatment is a necessary but not sufficient condi-
tion for the appearance of the inverse Kirkendall
effect. The second condition is the creation of the pos-
sibility of vacancy migration. This effect is well illus-
trated by the processes that occur during the mechan-
ical treatment of NiPd alloy. This alloy consists of
components with unlimited solubility and is homoge-
neous in the initial state. Separation into components
was detected during milling [5]. The maximum sepa-
ration of components in NiPd alloy was observed in
the temperature range of 293–403 K. However, no
alloy separation was observed at a milling temperature
of 80 K, but medium annealing at 553 K again led to
maximum alloy separation. Here, the delayed effect of
composition redistribution is caused by the fact that
sources of nonequilibrium vacancies are formed at the
temperature of liquid nitrogen, when vacancy migra-
tion is impossible. An increased temperature is
required to activate the migration of nonequilibrium
vacancies.

In the case of the mechanical alloying of Cu–Fe,
Cu–Co, and Fe–Cr–Sn, the effects of composition
redistribution also arise not directly during mechani-
cal treatment, but rather after compaction and
medium-temperature annealing.

APPROACH 
TO THE THERMODYNAMIC DESCRIPTION 

OF HETEROGENEOUS ALLOYS

The above analysis of the experimental data [1–3]
suggests that the initial state during mechanical alloy-
ing is characterized as two-phase, unlike the final state
(spatial composition modulations), which cannot be
described as a two-phase system. The analysis also
showed that a key role in the evolution of composition
distribution is played by the f luxes of nonequilibrium
vacancies. It makes sense to describe this process in
theoretical terms of the nonequilibrium thermody-
namics of a heterogeneous system, which is consid-
ered to be a continuous medium, including interphase
boundaries. The implementation of this approach
faces three problems.

The first problem is that the Onsager approach
aimed at studying processes in homogeneous systems
is used to describe diffusion [6]. A special feature of
this approach is the constructing the entropy balance
equation for describing a continuous medium using
the Lagrange method. The heart of the Lagrange
method is the study of processes in a fixed material
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element, which does not exchange matter with sur-
roundings. In thermodynamics, it is equivalent to a
closed system. The description of relaxation to phase
equilibrium in a heterogeneous system should be
based on the concept of an open system, since equilib-
rium is achieved through the exchange of matter
between phases [7]. Therefore, the Euler method is
preferable for deriving the entropy balance equation in
the case of the nonequilibrium thermodynamics for-
mulated for heterogeneous systems. It deals with the
exchange of matter between a fixed-volume element
and its surroundings, which is equivalent to the idea of
an open system in thermodynamics.

The second problem is related to the fact that diffu-
sion in substitutional alloys is not the same as the
independent migration of atoms of alloy components.
It must be taken into account that the movement of an
atom from one position to another implies the move-
ment of a vacancy in the opposite direction to the
atom. This means that, in the thermodynamic
description, the gradient of the chemical potential of
the components cannot be considered the sole driving
force of diffusion. To adequately describe diffusion, a
gradient of some quantity, which includes the chemi-
cal potentials of components and vacancies, should be
used as a driving force.

The third problem is that the classical version of the
local equilibrium hypothesis cannot be used for the
thermodynamic description of heterogeneous sys-
tems. According to this hypothesis, in all regions of a
heterogeneous system, including the interphase
boundary, the chemical potential should be consid-
ered as a function of the local values of the following
intensive variables: state (T, p) and order parameters
(ρ, ck).

State and order parameters in the context of ther-
modynamics can be determined as follows. In equilib-
rium, the state parameters (T, p, μk) have the same val-
ues in all parts of the system. The order parameters
(s, ρ, ck) describe the difference between the system
phases, when the system is in an equilibrium state. In
the case of a binary alloy that consists of mutually
insoluble components, the concentration of one of the
components can be considered as an order parameter.
The phases of the system far from the interphase
boundary can be considered as homogeneous. The
values of the order parameter remain the same within
the same phase, but they are different in neighboring
phases. This makes it possible to refine the condition
for the phase equilibrium in the binary two-phase
alloy [7]

(1)

where  is the chemical potential of component A

and  is the equilibrium concentration of a compo-
nent in the first and second phases. Here, the chemi-
cal potentials of the component in the phases are two

1 1 2 2( , ; ) ( , ; ) const,e e
A A A AT p c T p cμ = μ =

1,2Aμ

1,2
e
Ac

different concentration functions. The equilibrium
condition for describing a heterogeneous system in
terms of a continuous medium can be written as

μA(T, p) = const. (2)

Here, this means that, at equilibrium, the chemical
potential remains constant in any region of the hetero-
geneous system, including the interphase boundary.
Far from the boundary, the order parameter (concen-
tration) is constant, so Eq. (2) gives the same result as
Eq. (1). The order parameter sharply changes at the
vicinity of the boundary. Therefore, the chemical
potential should be selected as a function of the order
parameter, which ensures the simultaneous fulfillment
of Eq. (1) in phase regions and the constancy of its
value near the interphase boundary. This problem can
be solved using functional ΦΓ of the order parameter.
Here, Γ is an arbitrary intensive variable that is an
order parameter, e.g., density or component concen-
tration.

Functionals have been previously used in thermo-
dynamic descriptions, e.g., by Khachaturyan in the
form of a free energy functional to analyze modula-
tions in the spatial composition in alloys with anisot-
ropy of elastic properties [8], but their use was limited.
Using the relationship between the free energy and the
chemical potential, we can show the structural simi-
larity between the expressions given in [8] and those
obtained in this work. The main difference is in the
form of coefficients at derivatives in expressions we
obtained (see, e.g., Eq. (9)).

The functional can be expressed in general form as

(3)

The kernel of the functional is taken to be normal-
ized as follows:

(4)

All of the physical properties that are essential for a
real system are taken into account by choosing the
form of the kernel of the functional. For example, in
order to satisfy the causality principle, the Heaviside
function as a function of time may be included as a
factor in the expression for the kernel of the func-
tional; whereas the case with no preferential direction
requires the dependence of the kernel of the functional
on only the length of the spatial interval.

In the case of diffusion in alloys, the temporal part
of the functional may be neglected, with the assump-
tion the time of transferring the information about the
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state is extremely short, since the transfer occurs
through the field of elastic stresses, whereas the speed
of sound is many orders of magnitude faster than the
rate of diffusion. In addition, to study diffusion in an
isotropic medium (bcc or fcc lattice), let us consider
only one-dimensional cases. Finally, in the case with
no preferential direction, the dependence of the kernel
of the functional on the coordinate difference will be
considered even. As a result, we get

(5)

Now, the equilibrium condition of the two-phase
system can be written in the form

(6)
The kernel will be considered to be described by a

delta-like distance function. The kernel radius is taken
to be three lattice parameters, since the intensity of the
elastic stress field of a point source is decreased by an
order of magnitude at a distance of three lattice
parameters. Let an atom of a component embedded in
the matrix of another component be considered as a
perturbing source. In this case, a nonlocality range is
about 2 nm, which qualitatively coincides with the
width of the diffuse interphase boundary in alloys and
with the linear size of composition modulations
formed at the initial stage of spinodal decomposition.

Assuming that the integrand only slightly changes
at a distance of the functional kernel radius, the
expression can be expanded as

(7)

where Λ is the dimensional quantity of the order of the
kernel radius.

The equilibrium condition (6) can approximately
be written as

(8)

The expansion of the left-hand side of Eq. (8)
enables the transformation of the integral equation to
a differential one, which describes a certain depen-
dence of a component concentration near the equilib-
rium interphase boundary, at which the chemical
potential remains constant both within phase regions
and near the interphase boundary. This equation has
the form

(9)

The order parameters in heterogeneous systems are
internal thermodynamic degrees of freedom. Their
appearance is associated with the collective interac-
tion of the particles of matter, which forms the struc-
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ture of various phases. The collective interaction
within the macroscopic description leads to the non-
local dependence of the chemical potential on an
order parameter, which manifests not only in equilib-
rium state, as was shown above, but also in nonequi-
librium heterogeneous systems.

As a result, to describe heterogeneous systems in
terms of a continuous medium, the hypothesis of local
equilibrium should be extended to create a suitable
version of the Onsager approach.

Let us formulate a new hypothesis as follows:
(i) Assume that a heterogeneous system can be

divided into small regions and, within each region, all
expressions for equilibrium systems are valid.

(ii) The arguments of chemical potentials are taken
to be corresponding functionals, rather than local val-
ues of intensive variables. For example, instead of den-
sity ρ and component concentration, which play the
role of order parameters in vapor–liquid systems and
alloys, the arguments will be Φρ and 

The first point of the new hypothesis completely
repeats the local equilibrium hypothesis. As will be
seen from the following, the second point means that
the transition speed from one local state to another is
determined by the spatial-temporal distributions of
the parameters, rather than their local values.

THERMODYNAMIC DESCRIPTION 
OF DIFFUSION IN CONTINUOUS 

HETEROGENEOUS SYSTEMS

The expressions that describe thermodynamic
forces in the case of a homogeneous (single-phase)
system considered to be a continuous medium are
derived from the Gibbs equation for a closed system
[6]. A key moment in the study of heterogeneous sys-
tems is a consideration of the exchange of matter
between phases; therefore, the Euler approach is
required for their description as continuous media. In
this approach, the Gibbs equation should be written
taking into account the constant volume of a fixed
region of space and the change in the total amount of
matter in this region as follows:

(10)

μνk is the molar chemical potential and Nk is the num-
ber of moles of substance k. We introduce the follow-
ing specific values
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Here, V and M are the volume and the mass of the
fixed element in medium. Now, the Gibbs equation
can be rearranged as

where nmk is the number of moles per unit mass. This
is then expressed in terms of component density ρk as

(12)

where MAk is the mass of one mole of substance k.

The expression is then rearranged into the follow-
ing form:

where μmk is the specific chemical potential

Then, we turn to the limit of V → 0, which is rea-
sonable for the physically infinitely small volume of an
element

Since the volume is fixed according to the Euler
approach, we have
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or, if we pass to the record in the form of a differential
equation, we have

(13)

The entropy balance equation written in the local
form (13) makes it possible to describe heterogeneous
systems in terms of a continuous medium. To identify
the f lux and source of entropy, the general form of the
local entropy balance equation is used as follows:

(14)

In this work, we will restrict our consideration to
the study of diffusion; therefore, we write the relation
between the f lux and the source of entropy in the form

(15)

Using the local balance equations for component
mass in the absence of chemical reactions [6], we find

(16)

The relationship between the density of the local
and the substantial f luxes of the component is
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where  is the density of the substantial component
flux in the system of the mass center of a material par-
cel, i.e., the density of the diffusion flux, and  is the
velocity of the mass center of the material parcel in an
arbitrary laboratory frame of reference.

Then,
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To simplify the calculations, let us consider the
case of one component K = 1 without a loss of inter-
esting features. Then,  and  since in
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of the previous record, we have
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Then,

(20)

Assuming for the density of the local entropy f lux

we obtain for the density of the entropy source,

(21)

In the expression for σS, the only term that
describes the appearance of matter f lux when a tem-
perature gradient and a chemical potential are
retained. The Onsager approach developed by Dyar-
mati [6] does not consider this term, which makes it
impossible to describe the interphase exchange in het-
erogeneous systems.

DIFFUSION 
IN BINARY SUBSTITUTIONAL ALLOYS

Interdiffusion is properly described by transition-
ing from an arbitrary laboratory frame of reference to
that in which a crystal lattice is stationary and does not
change during the process.

To relate the f lux density and the entropy source in
the case of diffusion without chemical reactions, we
obtain

(22)

Let us to introduce the local entropy f lux as

For the entropy source we obtain

(23)

Since the exchange of momentum between com-
ponents and between the lattice and components can
be neglected in the consideration of diffusion in alloys,
the effects associated with the mass do not play any
role. This allows us to transfer from specific masses to
densities expressed in the number of atoms of the com-
ponent per unit volume. The following relationships
are used:
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where nk is the number of component atoms per unit
volume, m0k is the atomic mass, n0 is the number of
lattice sites per unit volume, Ck is the numerical den-
sity of a component,  is the numerical f lux of a com-
ponent, and μ0k is the chemical potential of a compo-
nent per lattice site. Then, instead of Eq. (23), we have

(24)

where  is the velocity of the center of the quantity of
the fixed material element (analog of the velocity of
the center of a material mass) relative to an arbitrary
laboratory frame of reference. The obtained equation
contains an ambiguity related to the freedom of the
frame of reference choice. As will be shown, physically
correct results can be obtained by choosing a frame of
reference in which the crystal lattice is stationary. Let
the velocity of the mass center of a material element
with respect to this frame of reference be denoted by u.
Obviously, u =  where  is the velocity of the
crystal lattice with respect to an arbitrary frame of ref-
erence.

In terms of numerical f lows, in the one-dimen-
sional case, expression (22) can be written in the form

(25)
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tive term added to the local entropy flux.

Then, entropy production for a binary alloy with a
cubic lattice (isotropy of diffusion properties) will be
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The relationship between the f lux density of com-
ponents and vacancies in the system of the material-
quantity center, i.e., diffusion fluxes jA,B,V, and the f lux
density in the lattice frame of reference gives the
expression

(27)

where  are the densities of the numerical f luxes of
components and vacancies with respect to the crystal
lattice. Since the jump of any atom results in the
movement of a vacancy towards the atom in the case of
the vacancy migration mechanism, the following rela-
tionship is fulfilled in the lattice frame of reference:

(28)
For numerical concentrations, the following rela-

tion is true:

(29)
Under conventional conditions for metals,

(30)
In the frame of reference associated with the cen-

ter of a material quantity, the matter is stationary;
therefore

(31)
Then, summing Eqs. (27) with allowance for the

above relations, we obtain

(32)
Consequently,

(33)
In view of Eq. (28), for diffusion fluxes, this can be

written as

(34)
Equation (26) can be rewritten in terms of Eq. (27)

as follows:

(35)

According to Onsager’s ideology, the entropy pro-
duction includes terms composed as products of f luxes
and conjugate thermodynamic forces. In our case,
Onsager’s constitutive relationships between forces
and fluxes have the form

(36)

(37)

In alloys, only isothermal diffusion is considered,
whereas cross effects may be neglected as follows [9]:

(38)
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L

j
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∂μ
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∂

Equations (36)–(38) are derived to describe diffu-
sion in substitutional alloys. However, they should be
modified to account for the essence of the vacancy
migration mechanism in an adequate way. First, let us
rewrite Eq. (38) in the following equivalent form

(39)

The quantity under the derivative sign has the form
of probability

(40)
Rewriting Eq. (39) in terms of the result (40), we

obtain

(41)

Here, the numerator includes the difference
between probabilities to find the system in a definite
state at two points. This record adequately shows the
situation in the case of the diffusion of a component
according to the mechanism of direct jumps, e.g., the
diffusion of interstitial atoms or the diffusion of an
impurity in liquid and gas. But it does not describe the
diffusion of a component in the case of the vacancy
migration mechanism in a substitutional alloy. In the
latter case, the migration of atoms and the counter
migration of vacancies completely correlate with each
other. In this case, it is necessary to take the difference
between probabilities corresponding to the final and
initial states. These states differ in the positions of
atoms and vacancies located in two adjacent regions,
which corresponds to the difference between
WA, B(2)WV(2) and WA, B(1)WV(1). Taking into account
that, before the transition, atoms A and B are local-
ized in the region with coordinate x, vacancies in the
region with the coordinate x + Δx, and they exchange
places after the transition; thus, the equation changes
as follows:

(42)

Within the limit of Δx → 0, we obtain

(43)

Probability WV is defined similarly to probabilities
WA, B, that is, by Eq. (40).

Let us consider the solid solution of components as
nonideal, whereas the solution of vacancies as ideal in
view of the condition CV  1. Then, their chemical
potentials can be written in the form

(44)
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γA, B(CA, B) are the thermodynamic activities of com-

ponents, and the values of  are independent of
the concentrations. Let us assume that the spatial
dependence only arises because of the inhomogeneity
of the composition; then,  and we
obtain

(46)

Equation (46) coincides in form with the corre-
sponding equation for the vacancy gas theory [9, 10],
which has the form

(47)

where  is the frequency of atom–vacancy transi-
tions in the crystal lattice reference frame. The coinci-
dence of the general form of the equation for the f lux,
which we derived from the thermodynamic descrip-
tion, with the appropriate equation for the vacancy
gas theory can be achieved under the following con-
ditions:

(48)

Let us write down the equation for the component
flux in the lattice reference system using the self-diffu-
sion coefficient of the component. When cross effects
are neglected, this coefficient can be expressed in
terms of the diagonal elements of the Onsager matrix
of coefficients [9]. Therefore, it can be determined by
the following expression:

(49)

The partial diffusion coefficients of components
have the form

(50)
gA, B is the thermodynamic factor of the partial diffu-
sion coefficient, which takes into account the nonide-
ality of the solid solution

(51)

The equation for the component f lux in the lattice
frame of reference takes the form

(52)

Using Eq. (34), for the diffusion flux (the f lux of
component B is opposite in sign), we obtain

(53)
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DD is the interdiffusion coefficient in Darken’s form

(54)
Using Eqs. (52), (28), and (32), we obtain the fol-

lowing expression for the vacancy flux

(55)

where the vacancy diffusion coefficient is determined as

(56)

If we express the vacancy concentration gradient
from Eq. (55) and exclude it from Eq. (53), we obtain

(57)

Here, interdiffusion coefficient DG is in the form
proposed by Nazarov and Gurov in [11]

(58)

The thermodynamic factor of interdiffusion coeffi-
cient DG is given by

(59)

For the activities of the components of regular
solution, the following was obtained [9]

(60)

Here, Z is the coordination number, and the mixing
energy is expressed through the pair interaction poten-
tials of atoms in the form

(61)

When investigating the Kirkendall effect, the
hypothesis of the local equilibrium gas of vacancies is
used. According to this hypothesis, the vacancy con-
centration at a point is unambiguously determined by
the local concentration of a component as follows:
CV = CV(CA,  B), (CA + CB = 1). In this case, the substi-
tution of CV(CA, B) in Eq. (53) allows one to reduce the
problem to the interdiffusion of the alloy components
[9]. The hypothesis of a locally equilibrium vacancy
gas rests on the assumption that there are many
vacancy sources/sinks at characteristic lengths of the
alloy composition change and, as a result, this vacancy
concentration is adjusted to the composition. This
hypothesis was well justified in the study of diffusion,
the driving force of which is the concentration gradi-
ents of components typical of metallurgical processes.
In our case, the driving force is associated with ther-
modynamic factors, and the same occurs during
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spinodal decomposition. The characteristic length of
the change in the concentration curve is the same that
the width of the equilibrium interphase boundary,
which is about 2 nm. There are no vacancy
sources/sinks at this distance; therefore, the equation
for the f lux in the form (57) at jV = 0 should be used to
describe the spinodal decomposition.

In the case of severe plastic deformation, the
vacancy f luxes are determined by the action of sources
and sinks located in grain triple junctions [5]. Since
the distance between them is greater than the grain
size, the condition jV = const can be laid down to
describe the diffusion at these scales. This also
requires to investigate the vacancy-flux-induced
decomposition of equilibrium diffuse boundaries
using an expression for the diffusion f lux similar to
Eq. (57).

NONLOCALITY IN THERMODYNAMIC 
DESCRIPTION OF DIFFUSION 

IN BINARY HETEROGENEOUS ALLOYS

The new hypothesis was formulated above, which
can replace the hypothesis of local equilibrium in the
case of heterogeneous systems. According to this
hypothesis, the argument of a chemical potential
within the study of one-dimensional diffusion in sub-
stitutional alloys is the functional of an order parame-
ter described by Eq. (5). One should take into account
that nonlocality is associated with the nonideality of
solid solution. Indeed, there are no phases in an ideal
solid solution. The activity coefficients of the compo-
nents characterize the difference between real solid
solution and ideal one. They are associated with cor-
relation effects and expressed through the interatomic
interaction energy [9]. Relying on the above, suppose
that the functional of an order parameter (functional
of component concentration in our case) is only an
argument of the component activities included in
Eq. (44) for chemical potentials. For the chemical
potentials of nonideal solid solutions, the following
refined expression can be introduced:

(62)

The expansion of functional (7) and the subse-
quent expansion of the activity coefficient in coordi-
nates, Eq. (57) can be rearranged into a new equation
for diffusion fluxes

(63)
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−

For regular solid solution, this equation takes
the form

(64)

where ψ is the relative mixing energy

(65)

Let us put jV = 0 when there are no vacancy fluxes
specified by the external action. Then, Eq. (63) for the
flux of a component becomes a balance equation that
agrees with the equations of the theory of spinodal
decomposition [12]. The difference is that the coeffi-
cient of the leading derivative is formally introduced as
a small fitting parameter in the theory of spinodal
decomposition. In our case, the coefficient is
expressed through the diffusion parameters and the
value of Λ, which is proportional to the radius of the
functional kernel. This makes it possible to estimate
the width of a nonequilibrium interphase boundary
that is ~2 nm, which is in good agreement with the
experimental data [2] for the nonequilibrium inter-
phase boundary.

DECOMPOSITION 
OF INTERPHASE BOUNDARIES INDUCED 

BY VACANCY FLUX
Let us develop composition distribution in an alloy

with allowance for the action of a constant vacancy
flux in it. The equation specifying the stationary con-
centration curve can be written for a regular solid solu-
tion based on Eq. (64), provided that jA = 0, jV = const.
This equation has the form

(66)

Twice integrating Eq. (66) yields an expression
similar to the equation of nonlinear oscillations of the
material point

(67)

The function of concentration plays the role of the
potential

(68)
f(CA) is the free energy of a regular solid solution per
lattice site, which is defined by the expression
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Here, a, b are integration constants and Φ is deter-
mined by the expression

(70)

In equilibrium state, there is no vacancy flux (jV = 0)
and the curve of the interphase boundary is described
by the following equation at b = 0 and a = ae:

. (71)

These values correspond to the condition when the
straight line y = a + bCA touches the curve f(CA) at two

points of minima, where  In the theory
of heterogeneous systems, this line is called the
conode. This position of the conode with respect to the
free energy curve provides the minimum free energy of
the equilibrium system [13]. Concentration values at
the points where the conode is in contact with the free
energy curve correspond to equilibrium solubility lim-
its  which for regular solid solution are deter-
mined by the following equation:

This result coincides with the classical equilibrium
theory for heterogeneous systems. An analysis based
on Eq. (71) yields one more result in the form of the
profile of the equilibrium diffuse interphase boundary
of a binary substitutional alloy. The curve  of
this profile is shown in Fig. 1.

The imposition of the vacancy f lux shifts the
potential curve downward and causes the composition
modulations (curve CA(x; jV) at the bottom of Fig. 1).
To prove this it is convenient to introduce a new
dependent variable that is analogous to the Lagrangian
as follows:

(72)

Here b = 0, which ensures the transition to an equilib-
rium state when there is no vacancy f lux, and T is the
analog of the kinetic energy.

The Lagrangian satisfies the homogeneous nonlin-
ear equation

(73)
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which makes it possible to create an iterative proce-
dure for deriving a solution of the nonlinear oscillation
equation.

In equilibrium, at jV = 0, we obtain

from which it follows that

Then, by the first iteration, we get

or

(74)

The sign of the last term changes after passing
through the inversion points of curve CA(x). The sign
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Fig. 1. Free energy f(СА) and potential function curves that
result from perturbations in alloys induced by the vacancy
flux in the upper part of the image. Equilibrium and non-
equilibrium concentration curves at the bottom.
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should be selected in a way that ensures the intersec-
tion between the curve

and the conode, which is necessary for the existence of
the inversion point of the curve.

The concentration gradient of a component can be
estimated from the parameters of the equilibrium
curve

For the difference between the inverse self-diffu-
sion coefficients, the simplest linear approximation
will be applied, which allows one to vary the position
of the point at which these quantities are equal,
depending on the position of  with respect to inter-
val 

where d is the scale parameter with the dimension of
the diffusion coefficient. This choice of the integrand
for Eq. (74) and its integrating results in

This approximation gives the equation of nonlinear
oscillations in the form

(75)

where

The obtained form of the potential shifts the initial
curve downward, and the shift is proportional to the
vacancy f lux. This causes the inversion points of the
curve (see CA(x; jV) curve shown at the bottom of
Fig. 1). The distance between them along the Ox axis
is of the order of the width of the equilibrium inter-
phase boundary.

Equations (63) and (64) for the diffusion flux are
analogous to those obtained within the framework of
the nonequilibrium vacancy gas model [10, 14]. This
model is a version of the semiphenomenological
theory of K.P. Gurov [9]. The approach developed
here and the nonequilibrium vacancy gas model are
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completely consistent when the following conditions
are met:

(76)

Since it follows from Eq. (76) that 
the vacancy gas theory imposes a restriction on the
quantities that are regarded as independent in the
thermodynamic theory of diffusion in alloys.

Taking into account that the nonequilibrium
vacancy gas model is in agreement with the proposed
version of nonequilibrium thermodynamics, provided
that conditions (76) are met, it can be shown that
allowance for nonlocality in both approaches also
leads to identical equations. Thus, expression (64) for
the component f lux coincides with the corresponding
expression in [14]. The latter was used to perform
numerical calculations of the evolution of the compo-
nent concentration, provided that the vacancy f lux
affected the equilibrium interphase boundary in a
one-dimensional case [15]. As a result (see Fig. 2), it
was shown that the vacancy f lux decomposes the
interphase boundary and leads to the formation of a
modulated structure. For the simplicity of calcula-
tions, the relative mixing energy was chosen to be 4.24,
which is slightly higher than a critical value of 4, below
which no composition modulations occur. As a result,
the numerical calculation yielded composition modu-
lations with a relatively large spatial period.

In summary, the effect of a vacancy f lux may cause
the decomposition of an interphase boundary and the
appearance of composition modulations instead,
which may explain the data of [1–3].

DISCUSSION
The results of the composition redistribution

during the mechanical alloying of the Fe–Cr, Cu–Co,
and Cu–Fe powders were previously discussed in [10].
The discussion was based on the model of nonequilib-
rium gas of vacancies, which took into account the
nonlocal composition dependence of the frequencies
of atom–vacancy transition [14].

In the present work, a similar result was obtained
based on the nonequilibrium thermodynamics
method developed here to describe heterogeneous sys-
tems as continuous medium. This work demonstrates
the potentials of a new approach using the experimen-
tal data that have already been interpreted in another
theoretical description.

In order for the equations for the material f luxes in
our version of the Onsager method to be in agree-
ment with analogous equations for the nonequilib-
rium vacancy gas theory, equation  = 
should be valid. However, the self-diffusion coeffi-
cients  in nonequilibrium thermodynamics are
determined through the diagonal elements of the
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Onsager matrix (49), whereas the coefficients of ther-
modynamic activity  characterize the structure of
the chemical potential (44). On the other hand,
kinetic coefficients and the gradients of chemical
potentials appear as factors in expressions for thermo-
dynamic f lows. That is, the chemical potentials and
the coefficients of the Onsager matrix in linear non-
equilibrium thermodynamics are considered to be
independent quantities; therefore, the restriction

=  which is imposed by the nonequilib-
rium vacancy gas theory, is unjustified and cannot be
applied without further investigation. It is necessary to
highlight several main aspects of the proposed version
of the nonequilibrium thermodynamics of heteroge-
neous systems.

The first aspect is associated with a nonlocal
dependence of f luxes and thermodynamic forces on
order parameters. This nonlocality makes an allow-
ance for the collective character of the interactions of
material particles, which results in the formation of
interphase boundaries. The formal aspect of account-
ing for the nonlocality is associated with the introduc-
tion of the dependence of thermodynamic quantities
on the functionals of the order parameters, rather than
the local values of these parameters in the analysis.

,A Bγ

,
*
A BD , ,V A BC γ

The small radius of the functional kernel makes it
possible to expand the integrand in terms of coordi-
nates, which automatically leads to singularly per-
turbed problems when writing the differential balance
equations. An example of this problem is the theory of
spinodal decomposition developed based on the
Cahn–Hilliard approach [12]. When there are no
vacancy f luxes in an equilibrium regular solid solu-
tion, we obtain results that are consistent with the clas-
sical equilibrium theory of heterogeneous systems.

The second aspect is associated with the change in
the conjugate thermodynamic force of the f lux of mat-
ter. It is chosen to be proportional to the difference in
state probabilities that arise when these regions
exchange atoms and the corresponding number of
vacancies with each other, rather than the difference in
chemical potentials in the neighboring regions of the
alloy. The probabilities of local states with a certain
concentration of components and vacancies are
expressed in the form WA, B, V = exp(–μ0A, B, V/kT),
whereas the f lux is proportional to

, ,
,
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Fig. 2. Evolution of composition distribution during interphase boundary decomposition induced by vacancy f lux crossing the
boundary [15]: (a) initial stage and (d) final stage.
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As a special case, this approach includes the con-
ventional version of the diffusion description. Indeed,
if we suppose WV(x) = const and take into account the
relationship between the probabilities and the chemi-
cal potential, for isothermal diffusion, we obtain the
classical version

Taking into account the above general equation for
the thermodynamic force, it can be shown that the
thermodynamic description of diffusion in substitu-
tional alloys and vacancy gas theory are in agreement.
The vacancy gas theory was tested on a wide experi-
mental material.

The third aspect is associated with the application
of the Euler method rather than the Lagrange method
for deriving the entropy balance equation. A peculiar
feature of the Lagrange method requires Gibbs equa-
tions to be used in a version that is unsuitable for ana-
lyzing open systems. This makes it impossible to derive
the entropy balance equation for a heterogeneous sys-
tem, which is considered to be a continuous medium.
The Euler method rests on the idea of a selected fixed
volume that can be considered as an open system. This
makes it possible to derive an entropy balance equa-
tion for a heterogeneous system and to develop a ver-
sion of the Onsager approach for it.

However, the problem emerges of choosing the
frame of reference in which the relationship between
thermodynamic forces and fluxes can be established.
Otherwise, the freedom of f lux values due to the pos-
sibility of change in the reference systems leads to
physically meaningless results. In our case, we chose a
frame of reference that is bound to the crystal lattice
and, thus, equations for numerical diffusion fluxes
were derived that were consistent with the expressions
for the vacancy gas theory.

This choice of the frame of reference allows one to
develop a thermodynamic approach that is simultane-
ously suitable for describing the Kirkendall effect, the
spinodal decomposition of a homogeneous metastable
solid solution, and the vacancy-flux-induced decom-
position of an equilibrium interphase boundary. The
latter made it possible to perform a semiquantitative
interpretation of the experimental data on the compo-
sition distribution in the powders of pure metals
during mechanical alloying.

The combination of these circumstances makes it
possible to consider the choice of the frame of refer-
ence bound to the crystal lattice to be justified when
determining the dependence of the f luxes on thermo-
dynamic forces.

The choice of the coordinate system bound to the
crystal lattice is the choice of the frame of reference
that is associated with space, the metric of which is
defined by the crystal lattice.

The advantage of choosing a frame of reference
bound to space was recently discussed in detail in view

, 0 , 0 ,
' ~ ( ( ) ( )).A B A B A Bj x x xμ + Δ − μ

of the interpretation of new data on the distribution of
matter in the universe in the context of quantum field
theory [16, 17]. This coincidence may acquire signifi-
cance in light of the model of the World Planck–
Kleinert crystal, the analysis of which in terms of
transport phenomena was carried out in [18].
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