Новгородова Н. Г.

ВЫСШЕЕ ИНЖЕНЕРНОЕ ОБРАЗОВАНИЕ И ЦИФРОВЫЕ ТЕХНОЛОГИИ

Наталья Григорьевна Новгородова

кандидат технических наук, доцент

ФГАОУ ВО «Российский государственный профессионально-педагогический университет», Россия, Екатеринбург

HIGHER ENGINEERING EDUCATION AND DIGITAL TECHNOLOGIES

Natalya G. Novgorodova

Candidate of technical sciences, associate professor Federal, State independent education provider of the higher professional education «Russian State Vocational Pedagogical»

Аннотация. Внедрение в образовательный процесс систем автоматизированного проектирования (САПР) позволяет сформировать ассоциативную связь реальной детали с 3D-моделью и ее изображением на чертеже. Самостоятельная работа студентов над курсовыми проектами требует внедрения в учебный процесс цифровых технологий обучения.

Abstract. The introduction of computer-aided design (CAD) systems into the educational process makes it possible to form an associative link between a real part and a 3D model and its image in the drawing. Independent work of students on course projects requires the introduction of digital learning technologies into the educational process

Ключевые слова: САПР, обучающий материал, курсовое проектирование студентов по дисциплине «Детали машин»

Keywords: CAD, training material, course design of students in the discipline "Machine parts"

В настоящее время прогрессивное развитие практически всех отечественных отраслей науки и производства невозможно без применения систем автоматизации проектирования (САПР), которые позволяют существенно сокращать время на решение сложнейших конструкторских задач при создании новых моделей изделий и машин и вывода их на рынок.

По мнению ведущих мировых аналитиков, основными факторами успеха в современном промышленном производстве являются:

- 1) сокращение срока выхода продукции на рынок;
- 2) снижение ее себестоимости;
- 3) повышение качества продукции.

Сейчас общепризнанным фактом является невозможность изготовления сложной наукоемкой продукции (кораблей, самолетов, различных видов промышленного оборудования и др.) без применения САПР.

Отличительными особенностями всех САПР являются:

- 1) твердотельное и поверхностное параметрическое моделирование;
- 2) полная ассоциативность между деталями, сборками и чертежами;
- 3) богатый интерфейс импорта/экспорта геометрии;
- 4) экспресс-анализ прочности деталей и кинематики механизмов.

К числу наиболее эффективных САПР-технологий, позволяющих изготавливать продукцию высокого уровня, принадлежат так называемые CAD/CAM/CAE-системы

Итак, современное проектирование в любой отрасли промышленности невозможно без САПР, состоящих из 3-х систем

CAD (Computer Aided Design) — это компьютерная поддержка проектирования, предназначенная для решения конструкторских задач и оформления конструкторской документации. CAD-системы, базирующиеся на трехмерной геометрии, сейчас широко применяют при проектировании большого спектра изделий в любой отрасти промышленного производства.

CAM (Computer Aided Manufacturing) — это компьютерная поддержка производства, предназначенная для проектирования технологии обработки изделий на станках с ЧПУ и выдачи программ для этих станков САМ-системы еще называют системами технологической подготовки производства.

CAE (Computer Aided Engineering) — это компьютерная поддержка инженерного анализа (анализ напряженного и деформированного состояния изделия) и поддержка инженерных расчетов. САЕ-системы включают в себя общирный класс систем, каждая из которых позволяет решать определенную расчетную задачу или группу задач.

САЕ-системы включает в себя:

- расчеты на прочность;
- анализ и моделирование тепловых процессов;
- расчеты гидравлических систем и машин;
- расчеты энергетических процессов и др.

В наше время использование компьютерных технологий в образовании сформировалось де-факто, что отражается общими тенденциями информатизации общества и многообразием решаемых задач. При этом спектр используемых программ больше зависит от профиля подготовки и характеризуется наличием как учебных версий коммерческого ПО, так и применением свободного программного обеспечения [1].

Прогресс развития техники, технологических процессов диктует требования к профессиональным кадрам, а, следовательно, к программам и дисциплинам высшего образования, к уровню профессиональной подготовки выпускника вуза.

Традиционная модель российского инженерного образования рассчитана на подготовку инженеров по конкретным узким инженерным специальностям для стабильно работающих отраслей промышленности: инженер-механик, инженер-металлург, инженер-энергетик, пока не стало очевидно, что узкие специалисты не могут быть успешны на рынке труда. Они, так называемые линейные инженеры, по-прежнему востребованы и успешно встраиваются

в технологический процесс. Но все чаще возникает потребность в «специалистах-супергероях»: инженерах, которые способны увидеть реальную проблему, предложить решение, реализовать его, сопроводить вплоть до внедрения на рынок и утилизировать, если нужно [2].

Современный этап развития высшего профессионального образования в России характеризуется *кардинальными изменениями*, что связано с темпами модернизации производственных технологий и оборудования. По мнению специалистов технологии меняются примерно раз в три года, а вузы готовят инженерные кадры от 4 до 7 лет (бакалавриат, затем магистратура). За это время текущая технология производства устаревает, а оборудование подлежит модернизации.

Как известно, профессиональная мобильность специалиста — это возможность и способность успешно переключаться с одного вида деятельности на другой вид деятельности. Профессиональная мобильность предполагает [3]:

- владение системой обобщенных профессиональных приемов и умение эффективно их применять для выполнения каких-либо заданий в смежных отраслях производства и сравнительно легко переходить от одной деятельности к другой;
- высокий уровень обобщенных профессиональных знаний, готовность к оперативному отбору и реализации оптимальных способов выполнения различных заданий в области своей профессии.

В настоящее время преподаватели высшей школы все чаще отмечают низкий уровень усвоения студентами инженерных и естественнонаучных дисциплин. Это объясняется отсутствием у большинства обучающихся умений умения размышлять, анализировать, устанавливать взаимосвязь причин и следствий, а также системного восприятия информации. Повышенные сложности возникают у студентов в усвоении образовательного материала инженерных дисциплин, таких, как «Теоретическая механика», «Сопротивление

материалов», «Материаловедение», «Основы взаимозаменяемости» и «Детали машин».

Применение цифровых технологий в процессе изучения этих дисциплин позволяет студентам не только облегчить усвоение учебного материала, но и создать логически обоснованное инженерное образование, а также — навыки работы в современных САПР: «Компас — 3V», Autodesk AutoCAD, Autodesk Inventor, Платформа nanoCAD и др. Современный выпускник вуза просто обязан знать возможности той или иной САПР для того, чтобы применять их для решения как образовательных, так и производственных задач.

Интерактивные цифровые технологии обучения широко внедряются в образовательные процессы института Инженерно-педагогического образования «Российского профессионально-педагогического университета». Так, например, в процесс курсового проектирования по дисциплине «Детали машин» внедрено применение САПР «Компас — 3V» и Autodesk AutoCAD. Использование этих САПР в образовательном процессе решает сразу несколько задач: ускоряет процесс выполнения чертежей, знакомит студентов с правилами их оформления по ЕСКД и дает навыки работы в современной САПР [3].

В объем курсового проекта по дисциплине «Детали машин входит расчетная часть (расчет энергосиловых параметров привода машины, расчет механической передачи, подшипников, валов и. т. д.) и графическая часть (сборочный чертеж редуктора, чертеж зубчатого колеса, вала и подшипниковой крышки). Все расчеты выполняются студентами в интерактивном формате в специальных программах или в САПР, обеспечивающих заданную точность расчетов и скорость их выполнения. Каждый студент сам выбирает САПР и решает вопрос: выполнить графическую часть проекта в формате 2D-чертежей или в формате 3D-моделей.

При выполнении 2D-чертежей редукторной передачи в САПР «Компас — 3V» и Autodesk AutoCAD у большинства студентов выявляется отсутствие ассоциативной связи реальной детали с ее изображением на чертеже. Даже выполнение лабораторных работ по изучению цилиндрических и червячных передач и подшипников не дают должного результата. В этом случае правильным решением является переход на 3D-моделирование этих передач, что позволяет дополнительно к перечисленному выше сформировать ассоциативную связь реальной детали с 3D-моделью и ее изображением на плоскости. Вместе с этим, и от преподавателя требуется желание осваивать и внедрять цифровые технологии в образовательный процесс. Чтобы повысить качество подготовки студентов, как будущих специалистов-профессионалов, необходимо время и творческая организация образовательного процесса.

Таким образом, цифровые сервисы не только выполняют функцию технического сопровождения учебного процесса, но и выступают инструментом развития *базовых персональных навыков*, способствующих формированию личностного и профессионального капитала студента университета [4].

Список литературы

- 1. *Башкатов, А.* Использование моделей САПР в инженерно-техническом образовании / Александр Башкатов, Дмитрий Котиц, Татьяна Юрочкина. URL: https://integral-russia.ru/2017/12/10/ispolzovanie-modelej-sapr-v-inzhenerno-tehnicheskom-obrazovanii/. Текст: электронный.
- 2. *Инженерное* образование будущего: трансформация российских вузов. Текст: электронный // Сайт Министерства науки и высшего образования России. URL: https://www.5top100.ru/news/108595/.
- 3. *Новгородова*, *Н*. *Г*. 3D-визуализация и высшее дистанционное инженерное образование / Н. Г. Новгородова. Текст: электронный // Информационные технологии в образовательном процессе вуза и школы: материалы XV Всероссийской научно-практической конференции, Воронеж, 24 марта 2021 г. Воронеж: Воронеж. гос. пед. ун-т, 2021. С. 338–343. URL: https://informatika-vrn.ru/wp-content/uploads/2021/04/sbornikIT_2021.pdf.

4. *Ольховая, Т. А.* Новые практики инженерного образования в условиях дистанционного обучения / Т. А. Ольховая, Е. В. Пояркова. Текст: электронный // Высшее образование в России. 2020. Т. 29, № 8–9. С. 142–154. https://doi.org/10.31992/0869-3617-2020-29-8-9-142-154.

УДК [378.016:004]:[378.147:004]

Орешкова М. Н.

ПРИМЕНЕНИЕ ОБЛАЧНЫХ ТЕХНОЛОГИЙ ПРИ ОБУЧЕНИИ БАКАЛАВРОВ (НА ПРИМЕРЕ ДИСЦИПЛИНЫ «ОБЛАЧНЫЕ СЕРВИСЫ»)

Мария Николаевна Орешкова

m.oreshkova@narfu.ru

ФГАОУ ВО «Северный (Арктический) федеральный университет имени М. В. Ломоносова», Россия, Архангельск

APPLICATION OF CLOUD TECHNOLOGIES DURING UNDERGRADUATE STUDIES (BY THE EXAMPLE OF THE COURSE "CLOUD SERVICES")

Mariya Nikolaevna Oreshkova

Northern (Arctic) Federal University named after M.V. Lomonosov, Russia,

Arkhangelsk

Аннотация. Статья посвящена возможностям применения облачных технологий в образовательном процессе.

Abstract. The article considers possibilities of application of cloud technologies in the educational process.

Ключевые слова: облачные технологии, облачные сервисы, образование, образовательный процесс.

Keywords: cloud computing, cloud services, education, educational process.