УДК [502.7:504.5:665.6/.7]:[502.175:542]

А. И. Алюшина
А. I. Aliushina
aleksandraalyushina@mail.ru
И. И. Гаврилин
I. I. Gavrilin
i.gavrilin@list.ru
ФГБОУ ВО «Уральский государственный
университет путей сообщения», г. Екатеринбург
Ural State University of Railway Transport, Yekaterinburg

ИССЛЕДОВАНИЕ ГЛУБИНЫ ПРОНИКНОВЕНИЯ НЕФТЕПРОДУКТОВ В ПОЧВУ В ЛАБОРАТОРНЫХ УСЛОВИЯХ

Аннотация: Представлен разработанный алгоритм проведения лабораторных исследований, позволяющий смоделировать аварийный разлив нефтепродуктов. Приведены характеристики нефтепродуктов, используемых в лабораторных исследованиях.

Ключевые слова: нефтепродукты, почва, алгоритм, исследования, образцы.

STUDY OF THE DEPTH OF PETROLEUM PRODUCTS INTO THE SOIL IN LABORATORY CONDITIONS

Abstract: A developed algorithm for conducting laboratory research is presented, which allows simulating an emergency oil spill. The characteristics of petroleum products used in laboratory studies are presented and discussed. **Keywords:** petroleum products, the soil, algorithm, study, samples.

Введение. Несмотря на обилие экспериментальных данных, существующие методики не позволяют определить глубину проникновения нефтепродуктов в почву. Точное определение глубины проникновения позволит подобрать соответствующий способ рекультивации загрязненных земель, как следствие это позволит сократить время, затраченное на ликвидацию последствий аварийного разлива, снизит толщину слоя почвы изымаемого при аварии.

Цель работы. Разработка алгоритма проведения лабораторных исследований в части изучения глубины проникновения нефтепродуктов в почву.

Методы и материалы исследования. В основу работы положены экспериментальные исследования в лабораторных условиях с применением методов наблюдения и эксперимента.

С целью оценки распространения нефтепродуктов в почвогрунтах необходимо проведение лабораторных исследований по изучению глубины проникновения нефтепродуктов в почву.

Правильную постановку задач и последовательность действий позволит решить алгоритм проведения лабораторных исследований (рис. 1). Алгоритм подразделяется на три основных этапа исследования:

- 1. Первый этап исследования включает в себя изучение аварий, произошедших на территории Российской Федерации с 1994 по 2022 год, с целью определения вида почвы, используемого при проведении лабораторных исследований;
- 2. Второй этап включается в себя: отбор почвенных образцов, их загрязнение и отслеживание динамики проникновения нефтепродуктов в почвенные образцы;
- 3. Третий этап состоит из составления графика глубины проникновения нефтепродуктов в почвенные образцы, на основании полученных данных.

Рисунок 1. Алгоритм проведения лабораторных исследований.

Для проведения лабораторных исследований отбираются образцы почвы в количестве пяти проб для каждого вида нефтепродукта. Отбор проб осуществляется по принципу «шахматной сетки» на выбранной территории. Для корректного определения глубины проникновения нефтепродуктов в почву образцы отбираютсяь без нарушения почвенных слоев, почвенный горизонт О, подгоризонт О1 не подлежит очищению.

Образцы почвы отбираются вертикальной колонкой глубиной 20 см, с дальнейшим размещением в вертикальной прозрачной емкости по диаметру отобранного образца (рис. 2, рис. 3).

Все образцы размещаются в равных условиях, в светлом помещении лаборатории, с предварительным измерением температура воздуха и влажностью воздуха.

Рисунок 2. Образцы отобранных почв, помещенные в емкости.

К проведению лабораторного исследования каждая емкость подготавливается по следующему алгоритму:

- маркировка наружной стенки емкости наименованием загрязняющего вещества;
- разметка глубины проникновения по отобранной почве на наружной стенке емкости;
- подготовка отверстий в емкости с расстоянием 0,5 см, 1 см и 2 см для проверки распространения нефтепродуктов.

Для каждого вида нефтепродуктов предусмотрено по пять проб почвы, с итоговым определением среднего значения глубины проникновения нефтепродуктов в почву и погрешности. Каждая проба загрязняется одинаковым количеством нефтепродукта в миллилитрах.

С целью моделирования аварийного разлива нефтепродуктов вещество заливается в центральную точку емкости с ее дальнейшим самостоятельным распределением по поверхности отобранной почвы.

В таблице 1 приведены значения по каждому нефтепродукту с точными данными объема, массы и плотности, данные взяты на основании полученных документов при подборе нефтепродуктов, измерений в ходе лабораторного исследования [1; 2; 3].

Рисунок 3. Подготовленная емкость для проведения лабораторного исследования на примере бензина.

Таблица 1. Данные о параметрах нефтепродуктов, применяемых в ходе лабораторного исследования.

№ п/п	Тип нефтепродукта	Объем, м ³	Масса, кг	Плотность, $\kappa\Gamma/M^3$
1	Нефть марки Urals	0,0002	0,172	860
2	Дизельное топливо марки ДТ- Л-К5	0,0002	0,168	839,4
3	Мазут топочный 100	0,0002	0,199	999,8
4	Бензин неэтилированный Премиум Евро – 95, вид II, класс D	0,0002	0,148	741,0

В ходе проведения лабораторных исследований заполняется заранее сформированная таблица (рис. 4) с использованием пакета программ на компьютере. Замеры проводятся в течение суток с момента загрязнения почвенных образцов.

В ходе третьего этапа составляется график глубины проникновения нефтепродуктов в почву в зависимости от времени на основе полученные результатов лабораторных исследований для каждого вида нефтепродуктов.

Результаты и их обсуждение. По результатам проведенной работы мы получаем разработанный алгоритм проведения лабораторных исследований, порядок его проведения требования к оформлению результатов.

Таблица 4.2. – Результаты лабораторных исследований глубины проникновения нефтепродуктов относительно времени для Нефти

№ замера	t, c	1, см								

,где t, с - время проведения замера

1, см – глубина проникновения нефтепродукта в почву за t,с

Рисунок 4. Форма таблицы, используемая для фиксации результатов лабораторных исследований.

Выводы. Разработанный алгоритм проведения лабораторных исследований позволит: рассмотреть более широко аспекты проводимой работы, выбрать наиболее распространенный тип загрязненной почвы нефтепродуктами в результате аварий, корректно провести необходимые исследований и сделать выводы по полученным результатам с их наглядной фиксацией.

Список литературы

- 1. Urals // Википедия. URL: https://ru.wikipedia.org/wiki/Urals (дата обращения: 15.07.2022).
- 2. Все секреты бензина: производители России, марки топлива и мифы о нем. URL: https://rosneftehim.ru/blog/vse-sekrety-benzina-proizvoditeli-rossii-marki-topliva-i-mify-o-nyem/?ysclid=ly9xyuh4py431696917 (дата обращения: 20.07.2022).
- 3. Потехин В. Керосин, виды, химический состав, свойства и применение // Вторая индустриализация России. 2019. 10 окт. URL: https://kerosin-vidyi-himicheskiy-sostav-svoystva-i-primenenie (дата обращения: 30.07.2022).