Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: https://elar.rsvpu.ru/handle/123456789/39908
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorAnoshina, O. V.en
dc.contributor.authorTrubnikova, A. S.en
dc.contributor.authorMilder, O. B.en
dc.contributor.authorTarasov, D. A.en
dc.contributor.authorGaneev, A. A.en
dc.contributor.authorTyagunov, A. G.en
dc.coverage.spatialRSVPUen
dc.coverage.spatialSCOPUSen
dc.date.accessioned2022-05-20T09:19:54Z-
dc.date.available2022-05-20T09:19:54Z-
dc.date.issued2020-
dc.identifier.issn22185046-
dc.identifier.otherhttps://www.scopus.com/record/display.uri?origin=resultslist&eid=2-s2.0-85079886639scopus_url
dc.identifier.urihttps://elar.rsvpu.ru/handle/123456789/39908-
dc.description.abstractResource design of gas turbine engines and installations requires extensive information about the heat resistance of nickel-based superalloys, from which the most critical parts of aircraft and marine engines, pumps of gas-oil pumping stations and power plants are made. The problems are that the data on the heat resistance obtained as a result of testing each alloy under study are quite limited. In the present paper, the task of modelling changes in the heat resistance of nickel-based superalloy on the basis of available experimental data is solved. To solve the task, the most modern approach, the neural network modeling method, was applied. The input data are chemical compositions of heat-resistant nickel-based superalloys and the values of their heat resistance obtained experimentally. The output data are the calculated values of heat resistance modeled by an artificial neural network. In the course of the work, transformations of the input data were carried out to reduce the standard deviation of the modeling of the output data. The choice of the neural network configuration was made in order to achieve the highest possible accuracy. As a result, a neural network of direct error propagation was used, with 27 neurons on the input layer, 13 neurons in the hidden layer and 1 neuron in the output layer. To validate the results of the predictions, a group of alloys with the maximum number of known experimental values of heat resistance was randomly selected before the input of data into the network. After preparing the data, selecting the configuration and training the network, the chemical compositions of the selected group were loaded and their heat resistance values were calculated. Comparison of the obtained data with the experimental data showed high efficiency of the method. As a result, data on the change of heat resistance for the studied alloys were obtained and an analytical expression describing the obtained dependences was formulated. © 2020, Institute for Metals Superplasticity Problems of Russian Academy of Sciences. All rights reserved.en
dc.format.mimetypeapplication/pdfen
dc.language.isoruen
dc.publisherInstitute for Metals Superplasticity Problems of Russian Academy of Sciencesen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.rightsAll Open Access, Hybrid Gold, Greenen
dc.sourceLetters on Materialsen
dc.subjectHEAT RESISTANCEen
dc.subjectNEURAL NETWORKSen
dc.subjectNICKEL-BASED SUPERALLOYSen
dc.subjectTHERMAL STABILITYen
dc.titleModeling of changes in heat resistance of nickel-based alloys using bayesian artificial neural networksen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dcterms.audienceOtheren
dcterms.audienceParents and Familiesen
dcterms.audienceResearchersen
dcterms.audienceSchool Support Staffen
dcterms.audienceStudentsen
dcterms.audienceTeachersen
local.description.firstpage106-
local.description.lastpage111-
local.issue1-
local.volume10-
local.identifier.doi10.22226/2410-3535-2020-1-106-111-
local.identifier.scopus85079886639-
local.identifier.eid2-s2.0-85079886639-
local.identifier.affiliationRussian State Vocational Pedagogical University, 11 Mashinostroiteley St, Yekaterinburg, 620012, Russian Federationen
local.identifier.affiliationUral Federal University n. a. the first President of Russia B. N. Yeltsin, 19 Mira St., Yekaterinburg, 620002, Russian Federationen
local.identifier.affiliationUfa State Aviation Technical University, 12 K. Marx St, Ufa, 450008, Russian Federationen
local.identifier.sourceScopusen
local.identifier.otherWOS:000514855400019-
local.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85079886639&doi=10.22226%2f2410-3535-2020-1-106-111&partnerID=40&md5=d0cfe98f8a210e9f6e43bd8ee780472a-
local.identifier.wos000514855400019-
local.contributor.employeeAnoshina, O.V., Russian State Vocational Pedagogical University, 11 Mashinostroiteley St, Yekaterinburg, 620012, Russian Federation-
local.contributor.employeeTrubnikova, A.S., Ural Federal University n. a. the first President of Russia B. N. Yeltsin, 19 Mira St., Yekaterinburg, 620002, Russian Federation-
local.contributor.employeeMilder, O.B., Ural Federal University n. a. the first President of Russia B. N. Yeltsin, 19 Mira St., Yekaterinburg, 620002, Russian Federation-
local.contributor.employeeTarasov, D.A., Ural Federal University n. a. the first President of Russia B. N. Yeltsin, 19 Mira St., Yekaterinburg, 620002, Russian Federation-
local.contributor.employeeGaneev, A.A., Ufa State Aviation Technical University, 12 K. Marx St, Ufa, 450008, Russian Federation-
local.contributor.employeeTyagunov, A.G., Ural Federal University n. a. the first President of Russia B. N. Yeltsin, 19 Mira St., Yekaterinburg, 620002, Russian Federation-
Располагается в коллекциях:Научные публикации, проиндексированные в SCOPUS и WoS

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85079886639.pdf3,05 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.